Combined effect of damage and plastic anisotropy on the ductility limit of thin metal sheets
Communication avec acte
Résumé
It is well known that both damage and plastic anisotropy strongly affect the ductility limit of thin metal sheets. Due to the manufacturing processes, initial defects, such as inclusions and voids, are commonly present in the produced sheet metals. Plastic anisotropy is a direct outcome of the rolling process, where the resulting metal sheets exhibit preferred crystallographic orientations or strong texture. In the present study, the combined effect of plastic anisotropy and damage on localized necking is numerically investigated and analyzed. To this aim, an improved version of the Gurson—Tvergaard—Needleman (GTN) constitutive framework is used to model the mechanical behavior of the studied sheet. This version, which is an extension of the original GTN model, incorporates Hill’s anisotropic yield function to take into account the plastic anisotropy of the matrix material. Particular attention is devoted to the derivation of the analytical tangent modulus associated with this constitutive model. This extended GTN model is successfully coupled with bifurcation theory to predict sheet metal ductility limits, which are represented in terms of forming limit diagrams (FLDs). The effect of some material parameters (e.g., anisotropy parameters of the metallic matrix) on the shape and the location of the predicted FLDs is then investigated and discussed through numerical simulations.
Fichier(s) constituant cette publication
- Nom:
- LEM3_ECF21_2016_MSOLLI
- Taille:
- 797.0Ko
- Format:
- Description:
- Communication principale
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureIt is well known that both damage and plastic anisotropy strongly affect the ductility limit of thin metal sheets. Due to the manufacturing processes, initial defects, such as inclusions and voids, are ...
-
Communication avec acteMSOLLI, Sabeur; BEN BETTAIEB, Mohamed; ABED-MERAIM, Farid (Francisco Chinesta, Elias Cueto and Emmanuelle Abisset-Chavanne (AIP), 2016)In the present paper, Thomason’s criterion is coupled with the well-known Gurson–Tvergaard–Needleman (GTN) damage model and used for the determination of the critical void volume fraction fc , which marks the initiation ...
-
Communication avec acteJEDIDI, Mohamed Yassine; BEN BETTAIEB, Mohamed; BOUGUECHA, Anas; KHABOU, Mohamed Taoufik; HADDAR, Mohamed; ABED-MERAIM, Farid (Springer, 2018)In many engineering applications (automotive, computer and mobile device industries, etc.), magnesium alloys have been widely used owing to their interesting physical and mechanical parameters. However, magnesium alloys ...
-
An anisotropic model with linear perturbation technique to predict HCP sheet metal ductility limit Communication avec acteJEDIDI, Mohamed Yassine; BEN BETTAIEB, Mohamed; ABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; BOUGUECHA, Anas; HADDAR, Mohamed (2021)In this paper, hexagonal closed packed (HCP) sheet metal ductility for a viscoplastic material is analyzed by using a linear perturbation technique. It can be used for the analysis of localized necking. This technique is ...
-
Article dans une revue avec comité de lectureJEDIDI, Mohamed Yassine; BEN BETTAIEB, Mohamed; ABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; BOUGUECHA, Anas; HADDAR, Mohamed (Elsevier, 2020)In the present contribution, a two-surface plasticity model is coupled with several diffuse and localized necking criteria to predict the ductility limits of hexagonal closed packed sheet metals. The plastic strain is ...