Measurement of plastic strain and plastic strain rate during orthogonal cutting for Ti-6Al-4V
Article dans une revue avec comité de lecture
Author
Date
2021Journal
International Journal of Mechanical SciencesAbstract
Finite Element Modelling used to predict machining outcomes needs to be supplied with the appropriate material thermomechanical properties which are obtained by specific testing devices and methodologies. However, these tests are usually not representative of the extreme conditions achieved in machining processes and the obtained material law may not be suitable enough. Inverse identification could address this problem by obtaining material thermomechanical properties directly from machining outcomes such as cutting forces, temperatures, strain or strain rates. Nevertheless, this technique needs to be supplied with accurate machining outcomes. However, some of them such as strain or strain rate are difficult to be properly measured. The aim of this paper is to present a methodology to measure plastic strain and strain rate during orthogonal machining under plane strain conditions. The main idea is to create a physical microgrid in a workpiece and to analyze the distortion suffered by this grid. The novelty of the method consists on its capability of measuring strain and strain rate fields in a very localized area (primary shear zone) using a single image. The methodology was applied in orthogonal cutting of Ti-6Al-4V under cutting conditions that are representative of the broaching process. Experimental results were compared with DIC measurements, analytical results based on unequal division shear zone model, literature results and with numerical fields obtained from an AdvantEdge-2D model.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteSELA, Andres; ORTIZ-DE-ZARATE, Gorka; SOLER, Daniel; ARISTIMUÑO, Patxi; SORIANO, Denis; GERMAIN, Guénaël; DUCOBU, François; ARRAZOLA, Pedro José (Elsevier BV, 2020)Surface integrity directly affects the mechanical behavior of the workpiece, which is especially relevant on fatigue behavior. To characterize the quality of the machined surface, aspects such as material damage, roughness ...
-
Article dans une revue avec comité de lectureSELA, Andres; SOLER, Daniel; ORTIZ-DE-ZARATE, Gorka; GERMAIN, Guénaël; DUCOBU, François; ARRAZOLA, Pedro José (MDPI AG, 2021)Despite the prevalence of machining, tools and cutting conditions are often chosen based on empirical databases, which are hard to be made, and they are only valid in the range of conditions tested to develop it. Predictive ...
-
Article dans une revue avec comité de lectureSELA, Andrés; ORTIZ-DE-ZARATE, Gorka; SOLER, Daniel; GERMAIN, Guénaël; GALLEGOS MAYORGA, Linamaria; ARRAZOLA, Pedro José (Elsevier, 2023-01-12)Nowadays, numerical models are one of the most widely used techniques to predict material performance subjected to different manufacturing processes. However, to obtain accurate predictions, these models require reliable ...
-
Article dans une revue avec comité de lectureUMBRELLO, Domenico; MATSUMURA, Takashi; ARRAZOLA, Pedro José; GERMAIN, Guénaël; COURBON, Cédric (Springer Science and Business Media LLC, 2022-04-07)AbstractThis paper reports on the state of the art in the experimental and numerical investigations of cutting and machining processes. The contributions on the above-mentioned processes and published on the Proceedings ...
-
Article dans une revue avec comité de lectureITURBE, Ariane; GIRAUD, Eliane; HORMAETXE, Exabier; GARAY, Ainhara; GERMAIN, Guénaël; OSTOLAZA, Koldo; ARRAZOLA, Pedro José (Elsevier, 2019)Corrigendum to “Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment” [Mater. Sci. Eng. A 682 (2017) 441–453]