Analyticity of solutions to thermo-elastic-plastic flow problem with microtemperatures
Article dans une revue avec comité de lecture
Date
2021Journal
Journal of Applied Mathematics and Mechanics (Zeitschrift für Angewandte Mathematik und Mechanik)Abstract
In this paper, we study some qualitative and numerical properties of new equations including the coupled effects of thermal elastic-plastic theory with microtemperatures. We establish the necessary and sufficient conditions to guarantee that the model dissipates energy. The one-dimensional case, which corresponds to isotropic hardening problem, is chosen in order to present some qualitative and numerical properties. With the help of the semigroup theory of linear operators, we prove the well-posedness of the one-dimensional problem corresponding to plastic flow. Then, we show that the associated C0−semigroup is not analytical in general, except for a special case. The exponential stability of the solutions is kept in all cases. Finally, a numerical tool, based on the finite element method, is developed to validate the proposed model and to show its capability. Particular attention is paid to the consideration of the elastoplastic behavior in the development of this tool.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureIn this paper, we develop new governing equations for thermo-gradient-dependent theory of plasticity. They include the coupled effects of thermal elastic-plastic theory, including balance and constitutive equations. To ...
-
Communication avec acteJEDIDI, Mohamed Yassine; BEN BETTAIEB, Mohamed; BOUGUECHA, Anas; KHABOU, Mohamed Taoufik; HADDAR, Mohamed; ABED-MERAIM, Farid (Springer, 2018)In many engineering applications (automotive, computer and mobile device industries, etc.), magnesium alloys have been widely used owing to their interesting physical and mechanical parameters. However, magnesium alloys ...
-
An anisotropic model with linear perturbation technique to predict HCP sheet metal ductility limit Communication avec acteJEDIDI, Mohamed Yassine; BEN BETTAIEB, Mohamed; ABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; BOUGUECHA, Anas; HADDAR, Mohamed (2021)In this paper, hexagonal closed packed (HCP) sheet metal ductility for a viscoplastic material is analyzed by using a linear perturbation technique. It can be used for the analysis of localized necking. This technique is ...
-
Article dans une revue avec comité de lectureJEDIDI, Mohamed Yassine; BEN BETTAIEB, Mohamed; ABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; BOUGUECHA, Anas; HADDAR, Mohamed (Elsevier, 2020)In the present contribution, a two-surface plasticity model is coupled with several diffuse and localized necking criteria to predict the ductility limits of hexagonal closed packed sheet metals. The plastic strain is ...
-
Communication avec acteJEDIDI, Mohamed Yassine; BEN BETTAIEB, Mohamed; KHABOU, Mohamed Taoufik; HADDAR, Mohamed; ABED-MERAIM, Farid (Springer, 2018)Due to their lightness, low stiffness and high strength, Hexagonal Closed Packed (HCP) materials are widely used in aeronautic and aerospace industries. In this paper, the ductility limit of HCP sheet materials at room ...