Fast Computation of Multi-Parametric Electromagnetic Fields in Synchronous Machines by Using PGD-Based Fully Separated Representations
Article dans une revue avec comité de lecture
Abstract
A novel Model Order Reduction (MOR) technique is developed to compute high-dimensional parametric solutions for electromagnetic fields in synchronous machines. Specifically, the intrusive version of the Proper Generalized Decomposition (PGD) is employed to simulate a Permanent-Magnet Synchronous Motor (PMSM). The result is a virtual chart allowing real-time evaluation of the magnetic vector potential as a function of the operation point of the motor, or even as a function of constructive parameters, such as the remanent flux in permanent magnets. Currently, these solutions are highly demanded by the industry, especially with the recent developments in the Electric Vehicle (EV). In this framework, standard discretization techniques require highly time-consuming simulations when analyzing, for instance, the noise and vibration in electric motors. The proposed approach is able to construct a virtual chart within a few minutes of off-line simulation, thanks to the use of a fully separated representation in which the solution is written from a series of functions of the space and parameters coordinates, with full space separation made possible by the use of an adapted geometrical mapping. Finally, excellent performances are reported when comparing the reduced-order model with the more standard and computationally costly Finite Element solutions.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureSANCARLOS, Abel; CAMERON, Morgan; ABEL, Andreas; CUETO, Elias; DUVAL, Jean-Louis; CHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2020)Lithium-ion batteries are widely used in the automobile industry (electric vehicles and hybrid electric vehicles) due to their high energy and power density. However, this raises new safety and reliability challenges which ...
-
Article dans une revue avec comité de lectureREILLE, Agathe; HASCOET, Nicolas; CUETO, Elias; DUVAL, Jean-Louis; KEUNINGS, Roland; GHNATIOS, Chady; AMMAR, Amine; CHINESTA SORIA, Francisco (Elsevier Masson, 2019)The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then ...
-
Article dans une revue avec comité de lectureA novel model order reduction (MOR) technique is presented to achieve fast and real-time predictions as well as high-dimensional parametric solutions for the electromagnetic force which will help the design, analysis of ...
-
Article dans une revue avec comité de lectureGHNATIOS, Chady; DELPLACE, Frank; BARASINSKI, Anais; DUVAL, Jean-Louis; CUETO, Elias; AMMAR, Amine; CHINESTA SORIA, Francisco (Wiley, 2020)Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion ...
-
Article dans une revue avec comité de lectureGHNATIOS, Chady; ABISSET-CHAVANNE, Emmanuelle; AMMAR, Amine; CUETOS, Elias; DUVAL, Jean-Louis; CHINESTA SORIA, Francisco (Elsevier, 2019)This work aims at proposing a new procedure for parametric problems whose separated representation has been considered difficult, or whose SVD compression impacted the results in terms of performance and accuracy. The ...