Numerical investigation of three-dimensional partial cavitation in a Venturi geometry
Article dans une revue avec comité de lecture
Résumé
Sheet cavitation appears in many hydraulic applications and can lead to technical issues. Some fundamental outcomes, such as, the complex topology of 3-dimensional cavitation pockets and their associated dynamics need to be carefully visited. In the paper, the dynamics of partial cavitation developing in a 3D Venturi geometry and the interaction with sidewalls are numerically investigated. The simulations are performed using a one-fluid compressible Reynolds-averaged Navier–Stokes solver associated with a nonlinear turbulence model and a void ratio transport equation model. A detailed analysis of this cavitating flow is carried out using innovative tools, such as, spectral proper orthogonal decompositions. Particular attention is paid in the study of 3D effects by comparing the numerical results obtained with sidewalls and periodic conditions. A three-dimensional dynamics of the sheet cavitation, unrelated to the presence of sidewalls, is identified and discussed.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication avec acteGOUIN, Camille; JUNQUEIRA JUNIOR, Carlos; GONCALVES, Eric; ROBINET, Jean-Christophe (The Society of Naval Architects of Korea (SNAK), 2021-05)Sheet cavitation appears in many hydraulic applications and can lead to technical issues. Numerical simulation is a pertinent way to study the phenomenon. A numerical tool based on 1-fluid compressible RANS equations with ...
-
Article dans une revue avec comité de lectureSANSICA, Andrea; ALIZARD, Frédéric; GONCALVES, Eric; ROBINET, Jean-Christophe (Cambridge University Press (CUP), 2018)A fully three-dimensional linear stability analysis is carried out to investigate the unstable bifurcations of a compressible viscous fluid past a sphere. A time-stepper technique is used to compute both equilibrium states ...
-
Conférence invitéeF. ABREU, Diego; T. V. DAURICIO, Eron; F. AZEVEDO, João Luiz; JUNQUEIRA-JUNIOR, Carlos (ABCM, 2021-11)The present work compares results for different numerical methods in search of alternatives to improve the quality of large-eddy simulations for the problem of a supersonic turbulent jet flows. Previous work has analyzed ...
-
Article dans une revue avec comité de lectureJUNQUEIRA-JUNIOR, Carlos; AZEVEDO, João Luiz F.; PANETTA, Jairo; WOLF, William R.; YAMOUNI, Sami (Springer Verlag, 2019)Acoustics loads are rocket design constraints which push researches and engineers to invest efforts in the aeroacoustics phenomena which is present on launch vehicles. Therefore, an in-house computational fluid dynamics ...
-
Conférence invitéeJUNQUEIRA-JUNIOR, Carlos; F. ABREU, Diego; T. V. DAURICIO, Eron; F. AZEVEDO, João Luiz (AIAA, 2022-06)The present study is concerned with large-eddy simulations (LES) of supersonic jet flows. The work addresses, in particular, the simulation of a perfectly expanded free jet flow with an exit Mach number of 1.4 and an exit ...