Cavitation control using passive flow control techniques
Article dans une revue avec comité de lecture
Abstract
Passive flow control techniques, and particularly vortex generators have been used successfully in a broad range of aero- and hydrodynamics applications to alter the characteristics of boundary layer separation. This study aims to review how such techniques can mitigate the extent and impact of cavitation in incompressible flows. This review focuses first on vortex generators to characterize key physical principles. It then considers the complete range of passive flow control technologies, including surface conditioning and roughness, geometry modification, grooves, discharge, injection, obstacles, vortex generators, and bubble generators. The passive flow control techniques reviewed typically delay and suppress boundary layer separation by decreasing the pressure gradient at the separation point. The literature also identifies streamwise vortices that result in the transfer of momentum from the free stream to near-wall low energy flow regions. The area of interest concerns hydraulic machinery, whose performance and life span are particularly susceptible to cavitation. The impact on performance includes a reduction in efficiency and fluctuations in discharge pressure and flow, while cavitation can greatly increase wear of bearings, wearing rings, seals, and impeller surfaces due to excessive vibration and surface erosion. In that context, few studies have also shown the positive effects that passive controls can have on the hydraulic performance of centrifugal pumps, such as total head and efficiency. It is conceivable that a new generation of design in hydraulic systems may be possible if simple design features can be conceived to maximize power transfer and minimize losses and cavitation. There are still, however, significant research gaps in understanding a range of impact factors such as manufacturing processes, lifetime, and durability, and essentially how a static design can be optimized to deliver improved performance over a realistic range of operating conditions.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureA prototype device for measuring the volumetric flow-rate by counting vortices has been designed and realized. It consists of a square-section pipe in which are placed a two-dimensional bluff body and a strain gauge force ...
-
Article dans une revue avec comité de lectureSmall horizontal axis wind turbines operating at low wind speeds face the issue of low performance compared to large wind turbines. A high amount of torque is required to start producing power at low wind speed to overtake ...
-
Article dans une revue avec comité de lectureLARABI, Abderrahim;
PEREIRA, Michaël;
RAVELET, Florent; AZZAM, Tarik; OUALLI, Hamid; MENFOUKH, Laiche;
BAKIR, Farid (EDP Sciences, 2021)
In this paper, 3D numerical simulations have been carried out to enhance the understanding of a flow over a passive control device composed of micro cylinder with, d/c = 1.34% placed in the vicinity of NACA0012 aerofoil ... -
Article dans une revue avec comité de lectureNGUYEN, Van-Thang; DANLOS, Amelie;
RAVELET, Florent;
DELIGANT, Michael; SOLIS, Moises;
KHELLADI, Sofiane;
BAKIR, Farid (EDP Sciences, 2021)
Centrifugal compressors are widely used in many industrial applications because of their advantages. However, these turbomachines suffer at a low-flow rate from instabilities, such as rotating stall and surge. That leads ... -
Article dans une revue avec comité de lectureThe aim of this paper is to study by CFD the performance and to characterize the velocity fields in the wake of an horizontal axis wind turbine. The design of this wind turbine is far from classical as it has been designed ...
