• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of residual stress fields after shot-peening of TRIP780 steel with second-order and artificial neural network models based on multi-impact finite element simulations

Article dans une revue avec comité de lecture
Auteur
DAOUD, M.
549864 Institut de recherche technologique Matériaux Métallurgie et Procédés [IRT M2P]
ccKUBLER, Regis
211915 Mechanics surfaces and materials processing [MSMP]
BEMOU, A.
OSMOND, P.
7736 PSA Peugeot - Citroën [PSA]
ccPOLETTE, Arnaud
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]

URI
http://hdl.handle.net/10985/21464
DOI
10.1016/j.jmapro.2021.10.034
Date
2021
Journal
Journal of Manufacturing Processes

Résumé

Shot-peening is a mechanical surface treatment widely employed to enhance the fatigue life of metallic components by generating compressive residual stress fields below the surface. These fields are mainly impacted by the selection of the process parameters. The aim of this work is to propose a hybrid approach to conduct two predictive models: second-order model and feed-forward artificial neural network model. For this purpose, a 3D multiple-impact finite element model coupled to a central composite design of experiments was employed. A parametric analysis was also conducted to investigate the effect of the shot diameter, the shot velocity, the coverage, and the impact angle on the induced residual stress profile within a TRIP780 steel. It was found that both models predict with good agreement, the residual stress profile as a function of the process parameters and can be used in shot-peening optimization due to their responsiveness.

Fichier(s) constituant cette publication

Nom:
MSMP__JOMP_2021_KUBLER.pdf
Taille:
1.204Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Shot Peening Analysis on Trip780 Steel Exhibiting Martensitic Transformation 
    Communication avec acte
    GUIHEUX, Romain; BOUSCAUD, Denis; PATOOR, Etienne; PUYDT, Quentin; OSMOND, Pierre; WEBER, Bastien; ccBERVEILLER, Sophie; ccKUBLER, Regis (ShotPeener ICSP13, 2017)
    In the last years, due to increasing ecology and environmental constraints, a search for lightweight structures has been carried out, leading to the use of more complex geometries and new materials. In that context, TRIP ...
  • Shot peening analysis on trip780 steel exhibiting martensitic transformation 
    Conférence invitée
    GUIHEUX, Romain; BOUSCAUD, Denis; PATOOR, Etienne; PUYDT, Quentin; OSMOND, Pierre; WEBER, Bastien; ccBERVEILLER, Sophie; ccKUBLER, Regis (2017)
    The microstructure and mechanical fields were studied on a cold-rolled TRIP 780 steel after conventional shot peening, and with or without pre-strain; for the first time, results were compared to numerical simulations at ...
  • A Data Structure for Developing Data-Driven Digital Twins 
    Ouvrage scientifique
    ORUKELE, Oghenemarho; ccPOLETTE, Arnaud; GONZALEZ LORENZO, Aldo; MARI, Jean-Luc; ccPERNOT, Jean-Philippe (Springer Nature Switzerland, 2024-06)
    Digital twins have the potential to revolutionize the way we design, build and maintain complex systems. They are high-fidelity representations of physical assets in the digital space and thus allow advanced simulations ...
  • Automatic 3D CAD models reconstruction from 2D orthographic drawings 
    Article dans une revue avec comité de lecture
    ZHANG, Chao; ccPOLETTE, Arnaud; CARASI, Gregorio; DE CHARNACE, Henri; ccPERNOT, Jean-Philippe (2023)
    This paper introduces a two-stage approach that automatically generates 3D CAD models from 2D orthographic drawings. First, a pattern-matching algorithm is proposed to reconstruct a network of 3D edges by matching 2D ...
  • Multi-part kinematic constraint prediction for automatic generation of CAD model assemblies using graph convolutional networks 
    Article dans une revue avec comité de lecture
    VERGEZ, Lucas; ccPOLETTE, Arnaud; ccPERNOT, Jean-Philippe (Elsevier BV, 2025-01)
    This paper presents a machine learning-based approach to predict kinematic constraints between CAD models that have potentially never been assembled together before. During the learning phase, the algorithm is trained ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales