A comparative in‐process monitoring of temperature profile in fused filament fabrication
Article dans une revue avec comité de lecture
Date
2020Journal
Polymer Engineering & ScienceRésumé
Fused filament fabrication (FFF), an additive manufacturing technique, is used to produce prototypes and a gradually more important processing route to get final products. Due to the layer-by-layer deposition mechanism involved, bonding between adjacent layers is controlled by the thermal energy of the material being printed. Thus, it is strongly in conjunction with the temperature development of the filaments during the deposition sequence. This study gives out an in-process set-up enabling to record temperature profile of two adjacent filaments or a sequence of deposition in various locations during FFF process. The main characteristic of the presented procedure is the possibility of obtaining a global temperature profile resulted from an IR-camera; parallel to those recorded using a K-type thermocouple. Needless to say that a K-type thermocouple accurately records the local temperature at the interface of adja cent filaments. Conversely, an IR-camera signifies the temperature profile on the captured surface. The obtained results showed that there is a remarkable difference between the cooling rate and re-heating peaks. The primary out come of this study is the consideration of results accuracy and the possibility of working on optimization of the obtained temperature profile. Altogether it helps optimize inter-layer strength while assessing the temperature evolution.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureVANAEI, Hamid Reza; SHIRINBAYAN, Mohammadali; RAISSI, Kaddour; TCHARKHTCHI, Abbas; DELIGANT, Michael; FITOUSSI, Joseph; KHELLADI, Sofiane (Wiley-Blackwell, 2020)Fused filament fabrication is considered one of the most used processes in additive manufacturing rapid prototypes out of polymeric material. Poor strength of the deposited layers is still one of the main critical problems ...
-
Article dans une revue avec comité de lectureVANAEI, Hamid Reza; RAISSI, Kaddour; SHIRINBAYAN, Mohammadali; TCHARKHTCHI, Abbas; DELIGANT, Michael; FITOUSSI, Joseph; KHELLADI, Sofiane (Springer Verlag, 2020)Abstract: Fused filament fabrication (FFF), which is an additive manufacturing technique, opens alternative possibilities for complex geometries fabrication. However, its use in functional products is limited due to ...
-
Article dans une revue avec comité de lectureVANAEI, Hamid Reza; SHIRINBAYAN, Mohammadali; VANAEI, Saeedeh; TCHARKHTCHI, Abbas; FITOUSSI, Joseph; KHELLADI, Sofiane (Emerald, 2021)Purpose Fused deposition modeling (FDM) draws particular attention due to its ability to fabricate components directly from a CAD data; however, the mechanical properties of the produced pieces are limited. This paper aims ...
-
Article dans une revue avec comité de lectureVANAEI, Hamid Reza; SHIRINBAYAN, Mohammadali; TCHARKHTCHI, Abbas; DELIGANT, Michael; KHELLADI, Sofiane (MDPI AG, 2021)Fused filament fabrication (FFF), an additive manufacturing technique, unlocks alternative possibilities for the production of complex geometries. In this process, the layer-by-layer deposition mechanism and several heat ...
-
Numerical Prediction for Temperature Profile of Parts Manufactured using Fused Filament Fabrication Article dans une revue avec comité de lectureVANAEI, Hamid Reza; SHIRINBAYAN, Mohammadali; TCHARKHTCHI, Abbas; DELIGANT, Michael; KHELLADI, Sofiane (Elsevier BV, 2022)Bonding of parts produced by fused filament fabrication (FFF) significantly depends on the temperature profile of filaments depositing one top of each other. It is necessary to evaluate the temperature profile during ...