• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Digital twins that learn and correct themselves

Article dans une revue avec comité de lecture
Auteur
MOYA, Beatriz
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
BADÍAS, Alberto
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
ALFARO, Icíar
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]
ccCUETO, Elias
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]

URI
http://hdl.handle.net/10985/22208
DOI
10.1002/nme.6535
Date
2022-06
Journal
International Journal for Numerical Methods in Engineering

Résumé

Digital twins can be defined as digital representations of physical entities that employ real-time data to enable understanding of the operating conditions of these entities. Here we present a particular type of digital twin that involves a combination of computer vision, scientific machine learning, and augmented reality. This novel digital twin is able, therefore, to see, to interpret what it sees—and, if necessary, to correct the model it is equipped with—and presents the resulting information in the form of augmented reality. The computer vision capabilities allow the twin to receive data continuously. As any other digital twin, it is equipped with one or more models so as to assimilate data. However, if persistent deviations from the predicted values are found, the proposed methodology is able to correct on the fly the existing models, so as to accommodate them to the measured reality. Finally, the suggested methodology is completed with augmented reality capabilities so as to render a completely new type of digital twin. These concepts are tested against a proof-of-concept model consisting on a nonlinear, hyperelastic beam subjected to moving loads whose exact position is to be determined.

Fichier(s) constituant cette publication

Nom:
PIMM_IJNME_2022_CHINESTA.pdf
Taille:
2.181Mo
Format:
PDF
Fin d'embargo:
2022-12-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Learning slosh dynamics by means of data 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; GONZÁLEZ, David; ccCUETO, Elias; ALFARO, Icíar; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    In this work we study several learning strategies for fluid sloshing problems based on data. In essence, a reduced-order model of the dynamics of the free surface motion of the fluid is developed under rigorous thermodynamics ...
  • Physically sound, self-learning digital twins for sloshing fluids 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; GONZALEZ, David; ccCUETO, Elias; ALFARO, Icíar; ccCHINESTA SORIA, Francisco (Public Library of Science, 2020)
    In this paper, a novel self-learning digital twin strategy is developed for fluid sloshing phenomena. This class of problems is of utmost importance for robotic manipulation of fluids, for instance, or, in general, in ...
  • A thermodynamics-informed active learning approach to perception and reasoning about fluids 
    Article dans une revue avec comité de lecture
    ccMOYA GARCÍA, Beatriz; ccBADIAS, Alberto; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    Learning and reasoning about physical phenomena is still a challenge in robotics development, and computational sciences play a capital role in the search for accurate methods able to provide explanations for past events ...
  • Physics Perception in Sloshing Scenes With Guaranteed Thermodynamic Consistency 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; BADIAS, Alberto; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements ...
  • MORPH-DSLAM: Model Order Reduction for Physics-Based Deformable SLAM 
    Article dans une revue avec comité de lecture
    ccBADIAS, Alberto; ALFARO, Icíar; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Institute of Electrical and Electronics Engineers (IEEE), 2022-11)
    We propose a new methodology to estimate the 3D displacement field of deformable objects from video sequences using standard monocular cameras. We solve in real time the complete (possibly visco-)hyperelasticity problem ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales