• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Crossing Scales: Data-Driven Determination of the Micro-scale Behavior of Polymers From Non-homogeneous Tests at the Continuum-Scale

Article dans une revue avec comité de lecture
Author
AMORES, Víctor J.
302798 Universidad Politécnica de Madrid [UPM]
MONTÁNS, Francisco J.
302308 University of Florida [Gainesville] [UF]
302798 Universidad Politécnica de Madrid [UPM]
ccCUETO, Elias
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]

URI
http://hdl.handle.net/10985/22235
DOI
10.3389/fmats.2022.879614
Date
2022-05
Journal
Frontiers in Materials

Abstract

We propose an efficient method to determine the micro-structural entropic behavior of polymer chains directly from a sufficiently rich non-homogeneous experiment at the continuum scale. The procedure is developed in 2 stages: First, a Macro-Micro-Macro approach; second, a finite element method. Thus, we no longer require the typical stress-strain curves from standard homogeneous tests, but we use instead the applied/reaction forces and the displacement field obtained, for example, from Digital Image Correlation. The approach is based on the P-spline local approximation of the constituents behavior at the micro-scale (a priori unknown). The sought spline vertices determining the polymer behavior are first pushed up from the micro-scale to the integration point of the finite element, and then from the integration point to the element forces. The polymer chain behavior is then obtained immediately by solving a linear system of equations which results from a least squares minimization error, resulting in an inverse problem which crosses material scales. The result is physically interpretable and directly linked to the micro-structure of the material, and the resulting polymer behavior may be employed in any other finite element simulation. We give some demonstrative examples (academic and from actual polymers) in which we demonstrate that we are capable of recovering “unknown” analytical models and spline-based constitutive behavior previously obtained from homogeneous tests.

Files in this item

Name:
PIMM_FM_2022_AMORES
Size:
1.496Mb
Format:
PDF
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Regularized regressions for parametric models based on separated representations 
    Article dans une revue avec comité de lecture
    ccSANCARLOS, Abel; CHAMPANEY, Victor; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (Springer Open, 2023-03)
    Regressions created from experimental or simulated data enable the construction of metamodels, widely used in a variety of engineering applications. Many engineering problems involve multi-parametric physics whose corresponding ...
  • Optimal velocity planning based on the solution of the Euler-Lagrange equations with a neural network based velocity regression 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; ccDI LORENZO, Daniele; CHAMPANEY, Victor; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (American Institute of Mathematical Sciences (AIMS), 2024-07)
    Trajectory optimization is a complex process that includes an infinite number of possibilities and combinations. This work focuses on a particular aspect of the trajectory optimization, related to the optimization of a ...
  • Engineering empowered by physics-based and data-driven hybrid models: A methodological overview 
    Article dans une revue avec comité de lecture
    CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Springer Science and Business Media LLC, 2022-04-05)
    Smart manufacturing implies creating virtual replicas of the processing operations, taking into account the material dimension and its multi-physics transformation when forming processes operate. Performing efficient, that ...
  • Data Completion, Model Correction and Enrichment Based on Sparse Identification and Data Assimilation 
    Article dans une revue avec comité de lecture
    DI LORENZO, Daniele; CHAMPANEY, Victor; GERMOSO, Claudia; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (MDPI AG, 2022-07)
    Many models assumed to be able to predict the response of structural systems fail to efficiently accomplish that purpose because of two main reasons. First, some structures in operation undergo localized damage that degrades ...
  • Learning data-driven reduced elastic and inelastic models of spot-welded patches 
    Article dans une revue avec comité de lecture
    REILLE, Agathe; CHAMPANEY, Victor; DAIM, Fatima; TOURBIER, Yves; HASCOET, Nicolas; GONZALEZ, David; ccCUETO, Elias; DUVAL, Jean Louis; ccCHINESTA SORIA, Francisco (EDP Sciences, 2021)
    Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales