An alternative way to describe thermodynamically-consistent higher-order dissipation within strain gradient plasticity
Article dans une revue avec comité de lecture
Date
2022-10Journal
Journal of the Mechanics and Physics of SolidsRésumé
In the context of strain gradient plasticity (SGP), description of higher-order dissipation is the subject of extensive on-going discussions. In most existing SGP theories including thermodynamically-consistent higher-order dissipation, higher-order dissipative processes are described based on the decomposition of the higher-order stresses into recoverable and unrecoverable parts. This higher-order stress decomposition represents the basis of the so-called non-incremental (Gurtin-type) SGP theories, which are the most commonly used in the literature. As formulated, these theories satisfy the thermodynamic requirement of non-negative dissipation. However, they generally lead to unusual effects for some boundary value problems, such as the occurrence of elastic gaps under non-proportional loading conditions. The present work proposes an alternative way to describe higher-order dissipative effects, with an illustration within strain gradient crystal plasticity (SGCP) framework. Inspired by rheological models in series like Maxwell model, the higher-order stress decomposition is replaced by a decomposition of the plastic slip gradients into recoverable and unrecoverable parts. Effects of this decomposition technique are studied and compared with those obtained using higher-order stress decomposition. Capabilities of such a technique to deal with elastic gaps are also investigated.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Scalar-based strain gradient plasticity theory to model size-dependent kinematic hardening effects Article dans une revue avec comité de lectureA common belief in phenomenological strain gradient plasticity modeling is that including the gradient of scalar variables in the constitutive setting leads to size-dependent isotropic hardening, whereas the gradient of ...
-
Article dans une revue avec comité de lectureAMOUZOU-ADOUN, Yaovi Armand; JEBAHI, Mohamed; FIVEL, Marc; FOREST, Samuel; LECOMTE, Jean-Sebastien; SCHUMAN, Christophe; ABED-MERAIM, Farid (Elsevier BV, 2023-04)Although presenting attractive features in dealing with small-scale size effects, strain gradient plasticity (SGP) theories can lead to uncommon phenomena for some boundary value problems. Almost all non-incremental ...
-
Article dans une revue avec comité de lectureAMOUZOU-ADOUN, Yaovi Armand; JEBAHI, Mohamed; FOREST, Samuel; FIVEL, Marc (Elsevier, 2024-12)An extensive study of size effects on the small-scale behavior of crystalline materials is carried out through discrete dislocation dynamics (DDD) simulations, intended to enrich strain gradient crystal plasticity (SGCP) ...
-
Article dans une revue avec comité de lectureWANG, Zhen-Pei; POH, Leong Hien; DIRRENBERGER, Justin; ZHU, Yilin; FOREST, Samuel (Elsevier, 2017)An important feature that drives the auxetic behaviour of the star-shaped auxetic structures is the hinge-functional connection at the vertex connections. This feature poses a great challenge for manufacturing and may lead ...
-
Article dans une revue avec comité de lectureDIRRENBERGER, Justin; FOREST, Samuel; JEULIN, Dominique (Elsevier, 2014)The size of representative volume element (RVE) for 3D stochastic fibrous media is investigated. A statistical RVE size determination method is applied to a specific model of random microstructure: Poisson fibers. The ...