• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
  • Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

An empirical mean-field model of symmetry-breaking in a turbulent wake

Article dans une revue avec comité de lecture
Auteur
CALLAHAM, Jared L.
545712 Department of Mechanical Engineering [University of Washington]
RIGAS, Georgios
69530 Imperial College London
ccLOISEAU, Jean-Christophe
134975 Laboratoire de Dynamique des Fluides [DynFluid]
BRUNTON, Steven L.
545712 Department of Mechanical Engineering [University of Washington]

URI
http://hdl.handle.net/10985/23022
DOI
10.1126/sciadv.abm4786
Date
2022-05-11
Journal
Science Advances

Résumé

Improved turbulence modeling remains a major open problem in mathematical physics. Turbulence is notoriously challenging, in part due to its multiscale nature and the fact that large-scale coherent structures cannot be disentangled from small-scale fluctuations. This closure problem is emblematic of a greater challenge in complex systems, where coarse-graining and statistical mechanics descriptions break down. This work demonstrates an alternative data-driven modeling approach to learn nonlinear models of the coherent structures, approximating turbulent fluctuations as state-dependent stochastic forcing. We demonstrate this approach on a high–Reynolds number turbulent wake experiment, showing that our model reproduces empirical power spectra and probability distributions. The model is interpretable, providing insights into the physical mechanisms underlying the symmetry-breaking behavior in the wake. This work suggests a path toward low-dimensional models of globally unstable turbulent flows from experimental measurements, with broad implications for other multiscale systems.

Fichier(s) constituant cette publication

Nom:
DYNFLUID_SCIADV_2022_LOISEAU.pdf
Taille:
2.666Mo
Format:
PDF
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Dynamique des Fluides (DynFluid)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • PySINDy: A comprehensive Python package for robust sparse system identification 
    Article dans une revue avec comité de lecture
    KAPTANOGLU, Alan; DE SILVA, Brian; FASEL, Urban; KAHEMAN, Kadierdan; GOLDSCHMIDT, Andy; CALLAHAM, Jared; DELAHUNT, Charles; NICOLAOU, Zachary; CHAMPION, Kathleen; KUTZ, J.; BRUNTON, Steven; ccLOISEAU, Jean-Christophe (The Open Journal, 2022-01)
    Automated data-driven modeling, the process of directly discovering the governing equations of a system from data, is increasingly being used across the scientific community. PySINDy is a Python package that provides tools ...
  • On the role of nonlinear correlations in reduced-order modelling 
    Article dans une revue avec comité de lecture
    CALLAHAM, Jared L.; BRUNTON, Steven L.; ccLOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2022-03)
    This work investigates nonlinear dimensionality reduction as a means of improving the accuracy and stability of reduced-order models of advection-dominated flows. Nonlinear correlations between temporal proper orthogonal ...
  • Nonlinear stochastic modelling with Langevin regression 
    Article dans une revue avec comité de lecture
    CALLAHAM, J. L.; RIGAS, G.; BRUNTON, S. L.; ccLOISEAU, Jean-Christophe (The Royal Society Publishing, 2021-06)
    Many physical systems characterized by nonlinear multiscale interactions can be modelled by treating unresolved degrees of freedom as random fluctuations. However, even when the microscopic governing equations and qualitative ...
  • Sparse reduced-order modelling: sensor-based dynamics to full-state estimation 
    Article dans une revue avec comité de lecture
    NOACK, Bernd R.; BRUNTON, Steven L.; ccLOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2018)
    We propose a general dynamic reduced-order modelling framework for typical experimental data: time-resolved sensor data and optional non-time-resolved particle image velocimetry (PIV) snapshots. This framework can be ...
  • Constrained sparse Galerkin regression 
    Article dans une revue avec comité de lecture
    BRUNTON, Steven L.; ccLOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2018)
    The sparse identification of nonlinear dynamics (SINDy) is a recently proposed data-driven modelling framework that uses sparse regression techniques to identify nonlinear low-order models. With the goal of low-order models ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales