• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

SMA-Net: Deep learning-based identification and fitting of CAD models from point clouds

Article dans une revue avec comité de lecture
Auteur
HU, Sijie
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccPOLETTE, Arnaud
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccPERNOT, Jean-Philippe
527033 Laboratoire d'Informatique et des Systèmes (LIS) (Marseille, Toulon) [LIS]
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
58355 École Nationale Supérieure des Arts et Métiers [ENSAM]
303092 Arts et Métiers Paristech ENSAM Aix-en-Provence
461986 Institut de recherches économiques et sociales [IRES]

URI
http://hdl.handle.net/10985/23047
DOI
10.1007/s00366-022-01648-z
Date
2022-04-13
Journal
Engineering with Computers

Résumé

Identifcation and ftting is an important task in reverse engineering and virtual/augmented reality. Compared to the traditional approaches, carrying out such tasks with a deep learning-based method have much room to exploit. This paper presents SMA-Net (Spatial Merge Attention Network), a novel deep learning-based end-to-end bottom-up architecture, specifcally focused on fast identifcation and ftting of CAD models from point clouds. The network is composed of three parts whose strengths are clearly highlighted: voxel-based multi-resolution feature extractor, spatial merge attention mechanism and multi-task head. It is trained with both virtually-generated point clouds and as-scanned ones created from multiple instances of CAD models, themselves obtained with randomly generated parameter values. Using this data generation pipeline, the proposed approach is validated on two diferent data sets that have been made publicly available: robot data set for Industry 4.0 applications, and furniture data set for virtual/augmented reality. Experiments show that this reconstruction strategy achieves compelling and accurate results in a very high speed, and that it is very robust on real data obtained for instance by laser scanner and Kinect.

Fichier(s) constituant cette publication

Nom:
LISPEN_EWC_2022_PERNOT.pdf.pdf.pdf
Taille:
3.107Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • A Data Structure for Developing Data-Driven Digital Twins 
    Ouvrage scientifique
    ORUKELE, Oghenemarho; ccPOLETTE, Arnaud; GONZALEZ LORENZO, Aldo; MARI, Jean-Luc; ccPERNOT, Jean-Philippe (Springer Nature Switzerland, 2024-06)
    Digital twins have the potential to revolutionize the way we design, build and maintain complex systems. They are high-fidelity representations of physical assets in the digital space and thus allow advanced simulations ...
  • Survey on the View Planning Problem for Reverse Engineering and Automated Control Applications 
    Article dans une revue avec comité de lecture
    PEUZIN-JUBERT, Manon; NOZAIS, Dominique; MARI, Jean-Luc; ccPERNOT, Jean-Philippe; ccPOLETTE, Arnaud (Elsevier BV, 2021-12)
    At present, optical sensors are being widely used to realize high quality control or reverse engineering of products, systems, buildings, environments or human bodies. Although the intrinsic characteristics of such ...
  • Automatic 3D CAD models reconstruction from 2D orthographic drawings 
    Article dans une revue avec comité de lecture
    ZHANG, Chao; ccPOLETTE, Arnaud; CARASI, Gregorio; DE CHARNACE, Henri; ccPERNOT, Jean-Philippe (2023)
    This paper introduces a two-stage approach that automatically generates 3D CAD models from 2D orthographic drawings. First, a pattern-matching algorithm is proposed to reconstruct a network of 3D edges by matching 2D ...
  • Multi-part kinematic constraint prediction for automatic generation of CAD model assemblies using graph convolutional networks 
    Article dans une revue avec comité de lecture
    VERGEZ, Lucas; ccPOLETTE, Arnaud; ccPERNOT, Jean-Philippe (Elsevier BV, 2025-01)
    This paper presents a machine learning-based approach to predict kinematic constraints between CAD models that have potentially never been assembled together before. During the learning phase, the algorithm is trained ...
  • Case‑based tuning of a metaheuristic algorithm exploiting sensitivity analysis and design of experiments for reverse engineering applications 
    Article dans une revue avec comité de lecture
    ccSHAH GHAZANFAR, Ali; ccPOLETTE, Arnaud; ccPERNOT, Jean-Philippe; GIANNINI, Franca; MONTI, Marina (SPRINGER, 2022-03-17)
    Due to its capacity to evolve in a large solution space, the Simulated Annealing (SA) algorithm has shown very promising results for the Reverse Engineering of editable CAD geometries including parametric 2D sketches, ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales