• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid twins based on optimal transport

Article dans une revue avec comité de lecture
Auteur
TORREGROSA, Sergio
1073142 Stellantis - PSA Centre Technique de Vélizy
CHAMPANEY, Victor
ccAMMAR, Amine
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
HERBERT, Vincent
1073142 Stellantis - PSA Centre Technique de Vélizy
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/23262
DOI
10.1016/j.camwa.2022.09.026
Date
2022-10
Journal
Computers & Mathematics with Applications

Résumé

Nowadays data is acquiring an indisputable importance in every field including engineering. In the past, experimental data was used to calibrate state-of-the art models. Once the model was optimally calibrated, numerical simulations were run. However, data can offer much more, playing a more important role than calibration or statistical analysis in the modeling/simulation process. Indeed, today data is gathered and used to train models able to replace complex engineering systems. The more and better the training data, the more accurate the model is. However, in engineering experimental data use to be the best data but also the most expensive in time and computing effort. Therefore, numerical simulations, cheaper and faster, are used instead but, even if they are closed to reality, they always present an error related to the ignorance of the engineer over the complex real system. It seems thus coherent to take advantage of each approach. This leads to the “hybrid twin” rationale. On the one hand, numerical simulations are computed as primary data source, assuming their inherent error. On the other hand, some experimental data is gathered to train a machine learning correction model which fills the prediction-measurement gap. However, learning this ignorance gap becomes difficult in some fields such as fluids dynamics, where a regression over the localized solutions can lead to non physical interpolated solutions. Therefore, the “hybrid twin” methodology proposed in this article relies on Optimal Transport theory, which provides a mathematical framework to measure distances between general objects and a completely different interpolation approach between functions.

Fichier(s) constituant cette publication

Nom:
LAMPA_CMA_2022_AMMAR.pdf
Taille:
2.760Mo
Format:
PDF
Description:
Hybrid twins based on optimal ...
Fin d'embargo:
2023-04-05
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Surrogate parametric metamodel based on Optimal Transport 
    Article dans une revue avec comité de lecture
    TORREGROSA, Sergio; CHAMPANEY, Victor; ccAMMAR, Amine; HERBERT, Vincent; ccCHINESTA SORIA, Francisco (Elsevier B.V., 2021-11-30)
    The description of a physical problem through a model necessarily involves the introduction of parameters. Hence, one wishes to have a solution of the problem that is a function of all these parameters: a parametric ...
  • Empowering optimal transport matching algorithm for the construction of surrogate parametric metamodel 
    Article dans une revue avec comité de lecture
    ccJACOT, Maurine; CHAMPANEY, Victor; ccTORREGROSA JORDAN, Sergio; ccCORTIAL, Julien; ccCHINESTA SORIA, Francisco (EDP Sciences, 2024-03)
    Resolving Partial Differential Equations (PDEs) through numerical discretization methods like the Finite Element Method presents persistent challenges associated with computational complexity, despite achieving a satisfactory ...
  • Describing and Modeling Rough Composites Surfaces by Using Topological Data Analysis and Fractional Brownian Motion 
    Article dans une revue avec comité de lecture
    ccRUNACHER, Antoine; ccKAZEMZADEH-PARSI, Mohammad-Javad; ccDI LORENZO, Daniele; CHAMPANEY, Victor; HASCOET, Nicolas; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (2023)
    Many composite manufacturing processes employ the consolidation of pre-impregnated preforms. However, in order to obtain adequate performance of the formed part, intimate contact and molecular diffusion across the different ...
  • Parametric Curves Metamodelling Based on Data Clustering, Data Alignment, POD-Based Modes Extraction and PGD-Based Nonlinear Regressions 
    Article dans une revue avec comité de lecture
    ccCHAMPANEY, Victor; PASQUALE, Angelo; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Frontiers, 2022-06)
    In the context of parametric surrogates, several nontrivial issues arise when a whole curve shall be predicted from given input features. For instance, different sampling or ending points lead to non-aligned curves. This ...
  • Empowering PGD-based parametric analysis with Optimal Transport 
    Article dans une revue avec comité de lecture
    ccMUNOZ, David; ccTORREGROSA JORDAN, Sergio; ALLIX, Olivier; ccCHINESTA SORIA, Francisco (Elsevier BV, 2024-01)
    The Proper Generalized Decomposition (PGD) is a Model Order Reduction framework that has been proposed to be able to do parametric analysis of physical problems. These parameters may include material properties, boundary ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales