Free-Surface Effects on Two-Dimensional Hydrofoils by RANS-VOF Simulations
Article dans une revue avec comité de lecture
Date
2023-01-27Journal
Journal of Sailing TechnologyRésumé
Foiling yachts and crafts are both very sensitive to the flying height in terms of stability and performance, raising the scientific issue of the influence of the free-surface when the foil is at low submergence. This work presents numerical simulations of a 2D hydrofoil section NACA0012 at 5° angle of attack in the vicinity of the free-surface, for different values of the submergence depth, for a chord-based Froude number of 0.571 and a Reynolds number of 159,000. Unsteady-Reynolds Averaged Navier-Stokes (URANS) equations are solved with a mixture model to capture the free surface (Volume Of Fluid method), and using an automatic grid refinement. Verification of the numerical model and validation with data from the literature are presented. Deformation of the free surface and alteration of the hydrodynamic forces compared to the deep immersion case are observed for a submergence depth-to-chord ratio ℎ/c lower than 2. The foil drag increases up to more than three times the infinite-depth value at ℎ/c≈0.5. The lift force slightly increases until ℎ/c around 1, and then decreases sharply. For ℎ/c < 0.5, the pressure field around the foil is totally modified and the lift is swapped to downward. The study highlights the importance of considering the effect of finite submergence to compute foils’ hydrodynamic forces, for example to be used in Velocity Prediction Programs (VPP) of foiling crafts.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Performance enhancement of downwind sails due to leading edge flapping: A wind tunnel investigation Article dans une revue avec comité de lectureThis work presents a wind tunnel experimental study on the effect of the leading edge flapping on the aerodynamic performance of a spinnaker. Four J80-class spinnaker models, combining two different assembling structures ...
-
Communication avec acteAUBIN, Nicolas; AUGIER, Benoit; SACHER, Matthieu; FLAY, Richard G.J.; BOT, Patrick; HAUVILLE, Frederic (2016)An experiment was performed in the Yacht Research Unit’s Twisted Flow Wind Tunnel (University of Auckland) to test the effect of dynamic trimming on three IMOCA 60 inspired mainsail models in an upwind (AWA = 60 ) unheeled ...
-
Article dans une revue avec comité de lectureAUBIN, Nicolas; AUGIER, Benoit; SACHER, Matthieu; FLAY, Richard G.J.; BOT, Patrick; HAUVILLE, Frederic (The Society of Naval Architects and Marine Engineers, 2017)An experiment was performed in the Yacht Research Unit’s Twisted Flow Wind Tunnel (University of Auckland) to test the effect of dynamic trimming on three IMOCA 60 inspired mainsail models in an upwind ( AW = 60°) unheeled ...
-
Article dans une revue avec comité de lecturePERALI, Paolo; SACHER, Matthieu; LEROUX, Jean-Baptiste; WACKERS, Jeroen; AUGIER, Benoît; BOT, Patrick (Elsevier BV, 2024-08-08)As a first step toward a multi-fidelity optimization tool for hydrofoils, the present work assesses the ability of the in-house code PUFFIn to be used as a “low-fidelity” solver within the multi-fidelity framework. The ...
-
Communication avec acteAUBIN, Nicolas; AUGIER, Benoit; DEPARDAY, Julien; SACHER, Matthieu (Ecole Navale, 2017)This work presents a wind tunnel experimental study of the effect of curling on the spinnaker aerodynamic performance. Four spinnakers combining two different panellings and sail materials are tested at different wind ...