• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental Damage Localization and Quantification with a Numerically Trained Convolutional Neural Network

Communication avec acte
Auteur
POSTORINO, Hadrien
ccMONTEIRO, Eric
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccRÉBILLAT, Marc
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccMECHBAL, Nazih

URI
http://hdl.handle.net/10985/23342
DOI
10.1007/978-3-031-07322-9_41
Date
2022-06

Résumé

Structural Health Monitoring (SHM) based on Lamb wave propagation is a promising technology to optimize maintenance costs, enlarge service life and improve safety of aircrafts. A large quantity of data is collected during all the life cycle of the structure under monitoring and must be analysed in real time. We propose here to use 1D-CNN to estimate the severity and the localisation of a damage with the signals measured on a composite structure monitored with piezoelectric transducers (PZT). Two architectures have been tested: one takes for input the difference of the time signals of two different states and the second takes for in-puts temporal damage indexes. Those simple networks with a few layers predict with high precision the position and the severity of a damage in a composite plate. The evaluations on different cases show the robustness to simulated manufacturing uncertainties and noise. An evaluation on experimental measurement shows promising results to localise a damage on a real plate with a CNN trained with numerical data.

Fichier(s) constituant cette publication

Nom:
PIMM_EWSHM2022_2022_REBILLAT.pdf
Taille:
412.4Ko
Format:
PDF
Description:
Experimental damage localization ...
Fin d'embargo:
2022-12-22
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Towards an industrial deployment of PZT based SHM processes: A dedicated metamodel for Lamb wave propagation 
    Communication avec acte
    POSTORINO, Hadrien; ccMONTEIRO, Eric; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (2020)
    Numerical simulations of Structural Health Monitoring processes based on wave propagation can be very costly in terms of computation time, especially for complex aeronautic composite structures, and therefore strongly ...
  • Transfer Learning to close the gap between experimental and numerical data 
    Communication sans acte
    ccPOSTORINO, Hadrien; ccMONTEIRO, Eric; ccRÉBILLAT, Marc; ccMECHBAL, Nazih (CBM Academy, 2022-05)
    The deployment of Deep Learning (DL) strategies is particularly advantageous in Structural Health Monitoring (SHM) based of lamb Wave (LW) propagation due to the high quantity of data collected by the network of piezoelectric ...
  • Cross-structures Deep Transfer Learning through Kantorovich potentials for Lamb Waves based Structural Health Monitoring 
    Article dans une revue avec comité de lecture
    ccPOSTORINO, Hadrien; ccMONTEIRO, Eric; ccRÉBILLAT, Marc; ccMECHBAL, Nazih (University of Liege library ( Belgium), 2023-04)
    In Lamb Waves based Structural Health Monitoring (LWSHM) of composite aeronautic structures, Deep Learning (DL) methods have proven to be promising to monitor damage using the signals collected by piezoelectric sensors ...
  • Systems and methods for controlling and implantable blood pump 
    Brevet
    SCHEFFLER, Mattias; BARABINO, Nicolas; ccRÉBILLAT, Marc; ccMONTEIRO, Eric; ccMECHBAL, Nazih (2022-03)
    Systems and methods for controlling an implantable pump are provided. For example, the exemplary controller for controlling the implantable pump may only rely on the actuator's current measurement. The controller is robust ...
  • Advanced harmonic-hybrid reduced model for solving parametric dynamics in structural health monitoring 
    Communication sans acte
    ccRODRÍGUEZ ITURRA, Rodrigo Alejandro; CHINESTA, FRANCISCO; ccDI LORENZO, Daniele; ccMONTEIRO, Eric; ccNAZIH, MECHBAL; ccMARC, RÉBILLAT (2023-07)
    This work present an innovative technique that helps to accelerate structural dynamics simulations when there is a defect in the structure and at the same time, allows its approximation in a parametric way by using reduced ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales