• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transfer Learning to close the gap between experimental and numerical data

Communication sans acte
Auteur
ccPOSTORINO, Hadrien
ccMONTEIRO, Eric
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccRÉBILLAT, Marc
ccMECHBAL, Nazih

URI
http://hdl.handle.net/10985/23347
Date
2022-05

Résumé

The deployment of Deep Learning (DL) strategies is particularly advantageous in Structural Health Monitoring (SHM) based of lamb Wave (LW) propagation due to the high quantity of data collected by the network of piezoelectric transducers (PZT) during all the life cycle of the composite structure. However, such strategies rely on large training databases, difficult to collect experimentally. The use of numerical simulations faces that issue, but the modelsnever fit perfectly to the real structures, leading to error of diagnostic. We propose here to use Transfer Learning (TL) approaches to reduce the predictions errors of a Convolutional Neural Network (CNN) trained with numerical data. The network predicts the size and the position of a damage on a composite plate equipped with PZT. It is trained on a large source database composed of different damage scenarios on a composite plate. A second smaller target database is generated with small variations on the mechanic properties and PZT positions to simulate manufacturing uncertainties. Those uncertainties lead to prediction errors of the CNN. A Domain Adaptation (DA) based on Optimal Transport (OT) is used to project the target data on the source domain and therefore reduces the predictions error of the CNN. These TL approach should allow us to close the gap between experimental and numerical data.

Fichier(s) constituant cette publication

Nom:
PIMM_ICCBMA22_2022_POSTORINO.pdf
Taille:
258.1Ko
Format:
PDF
Description:
Transfer Learning to close the ...
Fin d'embargo:
2022-11-24
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Towards an industrial deployment of PZT based SHM processes: A dedicated metamodel for Lamb wave propagation 
    Communication avec acte
    POSTORINO, Hadrien; ccMONTEIRO, Eric; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (2020)
    Numerical simulations of Structural Health Monitoring processes based on wave propagation can be very costly in terms of computation time, especially for complex aeronautic composite structures, and therefore strongly ...
  • Experimental Damage Localization and Quantification with a Numerically Trained Convolutional Neural Network 
    Communication avec acte
    POSTORINO, Hadrien; ccMONTEIRO, Eric; ccRÉBILLAT, Marc; ccMECHBAL, Nazih (Springer International Publishing, 2022-06)
    Structural Health Monitoring (SHM) based on Lamb wave propagation is a promising technology to optimize maintenance costs, enlarge service life and improve safety of aircrafts. A large quantity of data is collected during ...
  • Cross-structures Deep Transfer Learning through Kantorovich potentials for Lamb Waves based Structural Health Monitoring 
    Article dans une revue avec comité de lecture
    ccPOSTORINO, Hadrien; ccMONTEIRO, Eric; ccRÉBILLAT, Marc; ccMECHBAL, Nazih (University of Liege library ( Belgium), 2023-04)
    In Lamb Waves based Structural Health Monitoring (LWSHM) of composite aeronautic structures, Deep Learning (DL) methods have proven to be promising to monitor damage using the signals collected by piezoelectric sensors ...
  • Advanced harmonic-hybrid reduced model for solving parametric dynamics in structural health monitoring 
    Communication sans acte
    ccRODRÍGUEZ ITURRA, Rodrigo Alejandro; CHINESTA, FRANCISCO; ccDI LORENZO, Daniele; ccMONTEIRO, Eric; ccNAZIH, MECHBAL; ccMARC, RÉBILLAT (2023-07)
    This work present an innovative technique that helps to accelerate structural dynamics simulations when there is a defect in the structure and at the same time, allows its approximation in a parametric way by using reduced ...
  • Topological data analysis for lamb waves based shm method in operational conditions 
    Communication avec acte
    ccLEJEUNE, Arthur; ccHASCOËT, Nicolas; ccRÉBILLAT, Marc; ccMECHBAL, Nazih; ccMONTEIRO, Eric (Dept. of Mechanical Engineering & Aeronautics University of Patras, 2023)
    Structural Health Monitoring (SHM) based on Lamb wave propagation is a promising solution to optimize maintenance, safety and enlarge service life of aeronautical structures. However, it remains a significant challenge to ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales