Relationship Between Crystallization, Mechanical and Gas Barrier Properties of Poly(ethylene furanoate) (PEF) in Multinanolayered PLA-PEF and PET-PEF Films
Communication avec acte
Résumé
Food packaging films must be reinvented in order to answer the new demanding ecological requirements. Biobased and/or biodegradable polymers appear as an interesting alternative to reduce petroleum dependence and carbon dioxide emissions. Poly(ethylene furanoate) (PEF) appears today as a new promising biopolymer thanks to its good gas barrier and mechanical properties, despite its high price that could limit its industrial applications. Its combination with other polymers is thus of great interest and for the first time, film coextrusion process is used to create PLA-PEF and PET-PEF multi-micro/nano layered films. A new PEF grade developed by AVA Biochem in the H2020 Mypack program, has been used and firstly analysed in terms of melt processability, mechanical, thermal and gas barrier properties. Our major results confirmed the good gas barrier as well as mechanical properties of amorphous PEF. Post-extrusion PEF bulk thermal crystallization led to very brittle material making gas barrier measurements impossible. Micro/nanolayered PLA-PEF and PET-PEF films with different PEF layer thicknesses have been processed and post-extrusion annealing treatment was carried out. The relationship between crystallinity, mechanical and gas barrier properties will be investigated.
Fichier(s) constituant cette publication
- Nom:
- PIMM_ESAFORM-2021_2021_GUINAULT.pdf
- Taille:
- 642.1Ko
- Format:
- Description:
- Relationship Between Crystalli ...
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication sans acteGUINAULT, Alain; ROLAND, Sébastien; SOLLOGOUB, Cyrille; MESSIN, Tiphaine; ANDERER, Gilbert; KRAWIELITZKI, Stefan (Polytechnique Montreal - Polymer Processing Sociey, 2021-09)Food packaging films must be reinvented in order to meet the new ecological requirements and challenges. In particular, efforts have been directed to reduce the use of petrochemical polymers and to develop biobased and/or ...
-
Article dans une revue avec comité de lectureFOLLAIN, Nadège; GUINAULT, Alain; SOLLOGOUB, Cyrille; GAUCHER, Valérie; DELPOUVE, Nicolas; MARAIS, Stéphane; MESSIN, Tiphaine (Washington, D.C. : American Chemical Society, 2017)Multilayer coextrusion processing was applied to produce 2049-layer film of poly(butylene succinate-co-butylene adipate) (PBSA) confined against poly(lactic acid) (PLA) using forced assembly, where the PBSA layer thickness ...
-
Article dans une revue avec comité de lectureMESSIN, Tiphaine; FOLLAIN, Nadège; GUINAULT, Alain; MIQUELARD-GARNIER, Guillaume; SOLLOGOUB, Cyrille; DELPOUVE, Nicolas; GAUCHER, Valérie; MARAIS, Stéphane (Elsevier, 2017)The transport properties were specifically investigated from water and gas permeation kinetics, and the corresponding permeation parameters were determined. The confinement effect of MXD6 in the multilayer structure was ...
-
Article dans une revue avec comité de lectureMESSIN, Tiphaine; MARAIS, Stéphane; FOLLAIN, Nadège; CHAPPEY, Corinne; GUINAULT, Alain; MIQUELARD-GARNIER, Guillaume; DELPOUVE, Nicolas; GAUCHER, Valérie; SOLLOGOUB, Cyrille (Elsevier, 2019)A multilayer film composed of alternating layers of polycarbonate (PC) and poly(m-xylene adipamide) (MXD6) was elaborated by using an innovative multilayer coextrusion process. Quasi-continuous thin MXD6 layers (nanolayers) ...
-
Article dans une revue avec comité de lectureMESSIN, Tiphaine; MARAIS, Stéphane; FOLLAIN, Nadège; GUINAULT, Alain; GAUCHER, Valérie; DELPOUVE, Nicolas; SOLLOGOUB, Cyrille (Elsevier, 2020)Polyester multilayer membranes with more than 2000 alternating layers of poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) were successfully prepared via a nanolayer coextrusion process equipped with a multiplying-element ...