• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physically informed deep homogenization neural network for unidirectional multiphase/multi-inclusion thermoconductive composites

Article dans une revue avec comité de lecture
Auteur
JIANG, Jindong
107452 Laboratoire de Conception Fabrication Commande [LCFC]
WU, Jiajun
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
CHEN, Qiang
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccCHATZIGEORGIOU, George
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/23502
DOI
10.1016/j.cma.2023.115972
Date
2023-05
Journal
Computer Methods in Applied Mechanics and Engineering

Résumé

Elements of the periodic homogenization framework and deep neural network were seamlessly connected for the first time to construct a new micromechanics theory for thermoconductive composites called physically informed Deep Homogenization Network (DHN). This method utilizes a two-scale expansion of the temperature field of spatially uniform composites in terms of macroscopic and fluctuating contributions. The latter is estimated using deep neural network layers. The DHN is trained on a set of collocation points to obtain the fluctuating temperature field over the unit cell domain by minimizing a cost function given in terms of residuals of strong form steady-state heat conduction governing differential equations. Novel use of a periodic layer with several independent periodic functions with adjustable training parameters ensures that periodic boundary conditions of temperature and temperature gradients at the unit cell edges are exactly satisfied. Automatic differentiation is utilized to correctly compute the fluctuating temperature gradients. Homogenized properties and local temperature and gradient distributions of unit cells reinforced by unidirectional fiber or weakened by a hole are compared with finite-element reference results, demonstrating remarkable correlation but without discontinuities associated with temperature gradient distributions in the finite-element simulations. We also illustrate that the DHN enhanced with transfer learning provides a substantially more efficient and accurate simulation of multiple random fiber distributions relative to training the network from scratch.

Fichier(s) constituant cette publication

Nom:
LEM3_CMAME_2023_MERAGHNI.pdf
Taille:
10.90Mo
Format:
PDF
Fin d'embargo:
2023-12-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Deep homogenization networks for elastic heterogeneous materials with two- and three-dimensional periodicity 
    Article dans une revue avec comité de lecture
    WU, Jiajun; JIANG, Jindong; CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil (Elsevier BV, 2023-12)
    We present a deep learning framework that leverages computational homogenization expertise to predict the local stress field and homogenized moduli of heterogeneous materials with two- and three-dimensional periodicity, ...
  • Adaptive deep homogenization theory for periodic heterogeneous materials 
    Article dans une revue avec comité de lecture
    WU, Jiajun; CHEN, Qiang; JIANG, Jindong; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil (Elsevier BV, 2024-07)
    We present an adaptive physics-informed deep homogenization neural network (DHN) approach to formulate a full-field micromechanics model for elastic and thermoelastic periodic arrays with different microstructures. The ...
  • Elasticity-inspired data-driven micromechanics theory for unidirectional composites with interfacial damage 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; TU, Wenqiong; WU, Jiajun; HE, Zhelong; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; YANG, Zhibo; CHEN, Xuefeng (Elsevier BV, 2024-11)
    We present a novel elasticity-inspired data-driven Fourier homogenization network (FHN) theory for periodic heterogeneous microstructures with square or hexagonal arrays of cylindrical fibers. Towards this end, two ...
  • Nitsche's method enhanced isogeometric homogenization of unidirectional composites with cylindrically orthotropic carbon/graphite fibers 
    Article dans une revue avec comité de lecture
    DU, Xiaoxiao; CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; ZHAO, Gang; CHEN, Xuefeng (Elsevier BV, 2024-08)
    An isogeometric homogenization (IGH) technique is constructed for the homogenization and localization of unidirectional composites with radially or circumferentially orthotropic carbon/graphite fibers. The proposed theory ...
  • Physics-informed deep homogenization approach for random nanoporous composites with energetic interfaces 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; CHEN, Xuefeng; YANG, Zhibo (Elsevier BV, 2025-01)
    This contribution presents a new physics-informed deep homogenization neural network model for identifying local displacement and stress fields, as well as homogenized moduli, of nanocomposites with periodic arrays of ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales