Study of angular cutting conditions using multiple scratch tests onto low carbon steel: An experimental-numerical approach
Article dans une revue avec comité de lecture
Auteur
Résumé
Multiple parallel scratches are often analyzed to understand the material removal mechanisms due to abrasion. However, successive scratches with different orientations may represent better the conditions found in machining processes, such as honing and belt finishing. The objective of this work was to analyze the cutting forces and the phenomena of material removal due to abrasion, arising from angular scratches in low carbon steel. Experimental and numerical techniques were considered. In both, analyses considered the presence of an initial set of parallel scratches, followed by a second set of scratches with different orientations (10, 20 or 30°) with respect to the previous one. The cutting action was performed by a tool representing an abrasive particle, which had a cono-spherical geometry with 235μm tip radius and 30° apex angle. The cutting settings were: 50m/min scratch velocity and 100μm depth of cut. In the experimental part, scratches were conducted using a shaper machine tool equipped with a tungsten carbide (WC-Co) stylus. Tests were conducted on a Kistler platform, which allowed force measurement. Surfaces were later analyzed with an optical profilometer. The numerical simulations considered a ductile damage model with element deletion to provide the material removal during the scratches. Experimental and numerical results showed that the angle affects the cutting forces, especially when one scratch crosses a previously scratched region. The 20° case was the most critical, especially in terms of the cutting forces, due to the accentuated material strain-hardening for this condition. Likewise, this fact was corroborated by numerical results, which indicated a higher energy necessary to plastic deformation, and a reduced material removal at 20°.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureSOUZA, Roberto M.; ORDOÑEZ, Michell F.C.; MEZGHANI, Sabeur; CREQUY, Samuel; FUKUMASU, Newton K.; MACHADO, Izabel F.; EL MANSORI, Mohamed (Elsevier, 2019)Metal-matrix composites with solid lubricant reinforcements may present a suitable alternative to improve the tribological behavior of sintered components. Besides the performance during the application, the presence of ...
-
Article dans une revue avec comité de lectureThe tribological performance of piston ring-cylinder bore was investigated through deterministic mixed lubrication modeling. Bore topographies measured from regular honed Gray Cast Iron (GCI) to “Mirror-Like” coated bore ...
-
Article dans une revue avec comité de lectureDEMIRCI, Ibrahim; MEZGHANI, Sabeur; YOUSFI, Mohammed; EL MANSORI, Mohamed (American Society of Mechanical Engineers, 2014-01)Determining friction is as equally essential as determining the film thickness in the lubricated contact, and is an important research subject. Indeed, reduction of friction in the automotive industry is important for ...
-
Article dans une revue avec comité de lectureCylinder liner surface has a great influence on frictional and wear performances of combustion engines during the running-in period. Two surface texture anisotropies produced by plateau honing (PH) and helical slide honing ...
-
Communication avec acteThe reduction of friction and the limitation of emissions of greenhouse gases are the main objectives of the automotive industry. This energy e ciency is related to functionalization of the surface of ringpack tribo-system. ...