• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

MORPH-DSLAM: Model Order Reduction for Physics-Based Deformable SLAM

Article dans une revue avec comité de lecture
Auteur
ccBADIAS, Alberto
ALFARO, Icíar
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
GONZALEZ, David
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccCUETO, Elias

URI
http://hdl.handle.net/10985/23641
DOI
10.1109/tpami.2021.3118802
Date
2022-11
Journal
IEEE Transactions on Pattern Analysis and Machine Intelligence

Résumé

We propose a new methodology to estimate the 3D displacement field of deformable objects from video sequences using standard monocular cameras. We solve in real time the complete (possibly visco-)hyperelasticity problem to properly describe the strain and stress fields that are consistent with the displacements captured by the images, constrained by real physics. We do not impose any ad-hoc prior or energy minimization in the external surface, since the real and complete mechanics problem is solved. This means that we can also estimate the internal state of the objects, even in occluded areas, just by observing the external surface and the knowledge of material properties and geometry. Solving this problem in real time using a realistic constitutive law, usually non-linear, is out of reach for current systems. To overcome this difficulty, we solve off-line a parametrized problem that considers each source of variability in the problem as a new parameter and, consequently, as a new dimension in the formulation. Model Order Reduction methods allow us to reduce the dimensionality of the problem, and therefore, its computational cost, while preserving the visualization of the solution in the high-dimensionality space. This allows an accurate estimation of the object deformations, improving also the robustness in the 3D points estimation.

Fichier(s) constituant cette publication

Nom:
PIMM_IEEE-TPAMI_2022_CHINESTA.pdf
Taille:
18.61Mo
Format:
PDF
Description:
MORPH-DSLAM: Model Order Reduction ...
Fin d'embargo:
2023-05-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • An augmented reality platform for interactive aerodynamic design and analysis 
    Article dans une revue avec comité de lecture
    BADÍAS, Alberto; CURTIT, Sarah; GONZÁLEZ, David; ccCUETO, Elias; ALFARO, Icíar; ccCHINESTA SORIA, Francisco (Wiley, 2019)
    While modern CFD tools are able to provide the user with reliable and accurate simulations, there is a strong need for interactive design and analysis tools. State-of-the-art CFD software employs massive resources in terms ...
  • Real‐time interaction of virtual and physical objects in mixed reality applications 
    Article dans une revue avec comité de lecture
    BADÍAS, Alberto; GONZÁLEZ, David; ccCUETO, Elias; ALFARO, Icíar; ccCHINESTA SORIA, Francisco (Wiley, 2020)
    We present a real-time method for computing the mechanical interaction between real and virtual objects in an augmented reality environment. Using model order reduction methods we are able to estimate the physical behavior ...
  • Reduced order modeling for physically-based augmented reality 
    Article dans une revue avec comité de lecture
    BADIAS, Alberto; GONZALEZ, David; ccCUETO, Elias; ALFARO, Icíar; ccCHINESTA SORIA, Francisco (Elsevier, 2018)
    In this work we explore the possibilities of reduced order modeling for augmented reality applications. We consider parametric reduced order models based upon separate (affine) parametric dependence so as to speedup the ...
  • Digital twins that learn and correct themselves 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; BADÍAS, Alberto; ALFARO, Icíar; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Wiley, 2022-06)
    Digital twins can be defined as digital representations of physical entities that employ real-time data to enable understanding of the operating conditions of these entities. Here we present a particular type of digital ...
  • Learning slosh dynamics by means of data 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; GONZÁLEZ, David; ccCUETO, Elias; ALFARO, Icíar; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    In this work we study several learning strategies for fluid sloshing problems based on data. In essence, a reduced-order model of the dynamics of the free surface motion of the fluid is developed under rigorous thermodynamics ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales