• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On elastic gaps in strain gradient plasticity: 3D discrete dislocation dynamics investigation

Article dans une revue avec comité de lecture
Author
AMOUZOU-ADOUN, Yaovi Armand
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccJEBAHI, Mohamed
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
FIVEL, Marc
1043114 Science et Ingénierie des Matériaux et Procédés [SIMaP]
FOREST, Samuel
1157 Centre des Matériaux [MAT]
301492 Mines Paris - PSL (École nationale supérieure des mines de Paris)
LECOMTE, Jean-Sebastien
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
SCHUMAN, Christophe
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccABED-MERAIM, Farid
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/23663
DOI
10.1016/j.actamat.2023.118920
Date
2023-04
Journal
Acta Materialia

Abstract

Although presenting attractive features in dealing with small-scale size effects, strain gradient plasticity (SGP) theories can lead to uncommon phenomena for some boundary value problems. Almost all non-incremental (Gurtin-type) SGP theories including thermodynamically-consistent higher-order dissipation predict elastic gaps under certain non-proportional loading conditions. An elastic gap is defined as a finite change in the equivalent yield stress after an infinitesimal change in the strain conditions, at the occurrence of the non-proportional loading source. The existence of such gaps in reality is largely questioned and represents a major source of uncertainty preventing the development of robust SGP theories for real small-scale applications. Using 3D discrete dislocation dynamics (3D-DDD), the present paper aims at investigating size effects within micron-scale single crystal structures under various non-proportional loading conditions, including tension-compression-passivation, bending-passivation and tension-bending. An in-depth investigation of the occurrence of elastic gaps under these conditions, which are known to entail such gaps when using classical non-incremental SGP theories, is conducted. The obtained 3D-DDD results reproduce well known experimentally confirmed size effects like Hall-Petch effect, Asaro’s type III kinematic hardening and reversible plasticity. However, no evidence of the phenomenon of elastic gaps is found, which constitutes a first indication that this phenomenon may not exist in reality. The simulations are performed on face-centered cubic (FCC) Nickel single grains with cuboid shapes ranging from 2 microns to 15 microns and different orientations.

Files in this item

Name:
LEM3_ActaMater_2023_AMOUZOU-AD ...
Size:
2.021Mb
Format:
PDF
Description:
Article principal
Embargoed until:
2023-10-01
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Investigation des effets de taille sous chargements complexes par la dynamique des dislocations discrètes en 3D 
    Communication sans acte
    ccAMOUZOU-ADOUN, Yaovi Armand; ccJEBAHI, Mohamed; ccFIVEL, Marc; ccFOREST, Samuel; ccLECOMTE, Jean-Sebastien; ccSCHUMAN, Christophe; ccABED-MERAIM, Farid (2023-04-03)
    Bien qu’ils présentent des fortes capacités en matière de prédiction des effets de taille, les modèles de plasticité à gradient développés dans la littérature manquent encore de maturité pour être appliqués dans le monde ...
  • Advanced modeling of higher-order kinematic hardening in strain gradient crystal plasticity based on discrete dislocation dynamics 
    Article dans une revue avec comité de lecture
    AMOUZOU-ADOUN, Yaovi Armand; JEBAHI, Mohamed; FOREST, Samuel; FIVEL, Marc (Elsevier, 2024-12)
    An extensive study of size effects on the small-scale behavior of crystalline materials is carried out through discrete dislocation dynamics (DDD) simulations, intended to enrich strain gradient crystal plasticity (SGCP) ...
  • Strain gradient crystal plasticity model based on generalized non-quadratic defect energy and uncoupled dissipation 
    Article dans une revue avec comité de lecture
    ccJEBAHI, Mohamed; CAI, Lei; ccABED-MERAIM, Farid (Elsevier, 2020)
    The present paper proposes a flexible Gurtin-type strain gradient crystal plasticity (SGCP) model based on generalized non-quadratic defect energy and uncoupled constitutive assumption for dissipative processes. A power-law ...
  • On the non-quadratic defect energy in strain gradient crystal plasticity 
    Communication avec acte
    CAI, Lei; ccJEBAHI, Mohamed; ccABED-MERAIM, Farid (2019)
    Strain gradient crystal plasticity (SGCP) represents a very promising way to account for size effects in miniaturized components, thanks to the intrinsic length scale(s) embedded. Most of the existing SGCP models are based ...
  • Strain Localization Modes within Single Crystals Using Finite Deformation Strain Gradient Crystal Plasticity 
    Article dans une revue avec comité de lecture
    CAI, Lei; ccJEBAHI, Mohamed; ccABED-MERAIM, Farid (MDPI AG, 2021)
    The present paper aims at providing a comprehensive investigation of the abilities and limitations of strain gradient crystal plasticity (SGCP) theories in capturing different kinds of localization modes in single crystals. ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales