• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cross-structures Deep Transfer Learning through Kantorovich potentials for Lamb Waves based Structural Health Monitoring

Article dans une revue avec comité de lecture
Auteur
ccPOSTORINO, Hadrien
ccMONTEIRO, Eric
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccRÉBILLAT, Marc
ccMECHBAL, Nazih

URI
http://hdl.handle.net/10985/23690
DOI
10.25518/2684-6500.135
Date
2023-04
Journal
Journal of Structural Dynamics

Résumé

In Lamb Waves based Structural Health Monitoring (LWSHM) of composite aeronautic structures, Deep Learning (DL) methods have proven to be promising to monitor damage using the signals collected by piezoelectric sensors (PZTs). However, those data driven algorithms are strongly problem dependent: any structural change dramatically impacts the accuracy of the predictions and the generalization of the learnt algorithms to other structures within the fleet is impossible. Transfer Learning (TL) promises to face that issue by capitalizing on the knowledge acquired on a given structure to transfer it on another from the fleet. An original TL approach based on the Optimal Transport (OT) theory is proposed here to handle this issue. OT provides a rigorous mathematical framework for TL that can be practically implemented using Input Convex Neural Networks modelling Kantorovich potentials but that has never been used for LWSHM. Using OT, the knowledge acquired on a rich LW database is transferred to poorer LW databases collected on different structures with rising structural divergences. A Structural Index (SI) is defined and used to compute the gap between those different structures and can be used to estimate a priori the necessity of the use of TL methods. The proposed OT based TL method for LWSHM manages to reduce by almost 50% the predictions errors between numerical structures with strong differences (bias in mechanical properties and erroneous PZT position) in comparison with standard approaches. That leads to a promising approach to combine rich numerical database with poorer database in order to build robust algorithms for LWSHM of a fleet of aeronautical composite structures.

Fichier(s) constituant cette publication

Nom:
PIMM_JSD_2023_POSTORINO.pdf
Taille:
3.699Mo
Format:
PDF
Description:
Cross-structures Deep Transfer ...
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Towards an industrial deployment of PZT based SHM processes: A dedicated metamodel for Lamb wave propagation 
    Communication avec acte
    POSTORINO, Hadrien; ccMONTEIRO, Eric; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (2020)
    Numerical simulations of Structural Health Monitoring processes based on wave propagation can be very costly in terms of computation time, especially for complex aeronautic composite structures, and therefore strongly ...
  • Transfer Learning to close the gap between experimental and numerical data 
    Communication sans acte
    ccPOSTORINO, Hadrien; ccMONTEIRO, Eric; ccRÉBILLAT, Marc; ccMECHBAL, Nazih (CBM Academy, 2022-05)
    The deployment of Deep Learning (DL) strategies is particularly advantageous in Structural Health Monitoring (SHM) based of lamb Wave (LW) propagation due to the high quantity of data collected by the network of piezoelectric ...
  • Experimental Damage Localization and Quantification with a Numerically Trained Convolutional Neural Network 
    Communication avec acte
    POSTORINO, Hadrien; ccMONTEIRO, Eric; ccRÉBILLAT, Marc; ccMECHBAL, Nazih (Springer International Publishing, 2022-06)
    Structural Health Monitoring (SHM) based on Lamb wave propagation is a promising technology to optimize maintenance costs, enlarge service life and improve safety of aircrafts. A large quantity of data is collected during ...
  • Advanced harmonic-hybrid reduced model for solving parametric dynamics in structural health monitoring 
    Communication sans acte
    ccRODRÍGUEZ ITURRA, Rodrigo Alejandro; CHINESTA, FRANCISCO; ccDI LORENZO, Daniele; ccMONTEIRO, Eric; ccNAZIH, MECHBAL; ccMARC, RÉBILLAT (2023-07)
    This work present an innovative technique that helps to accelerate structural dynamics simulations when there is a defect in the structure and at the same time, allows its approximation in a parametric way by using reduced ...
  • Topological data analysis for lamb waves based shm method in operational conditions 
    Communication avec acte
    ccLEJEUNE, Arthur; ccHASCOËT, Nicolas; ccRÉBILLAT, Marc; ccMECHBAL, Nazih; ccMONTEIRO, Eric (Dept. of Mechanical Engineering & Aeronautics University of Patras, 2023)
    Structural Health Monitoring (SHM) based on Lamb wave propagation is a promising solution to optimize maintenance, safety and enlarge service life of aeronautical structures. However, it remains a significant challenge to ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales