• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep homogenization networks for elastic heterogeneous materials with two- and three-dimensional periodicity

Article dans une revue avec comité de lecture
Auteur
WU, Jiajun
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
JIANG, Jindong
107452 Laboratoire de Conception Fabrication Commande [LCFC]
CHEN, Qiang
301676 Xi'an Jiaotong University [Xjtu]
ccCHATZIGEORGIOU, George
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/24281
DOI
10.1016/j.ijsolstr.2023.112521
Date
2023-12
Journal
International Journal of Solids and Structures

Résumé

We present a deep learning framework that leverages computational homogenization expertise to predict the local stress field and homogenized moduli of heterogeneous materials with two- and three-dimensional periodicity, which is named physics-informed Deep Homogenization Networks (DHN). To this end, the displacement field of a repeating unit cell is expressed as two-scale expansion in terms of averaging and fluctuating contributions dependent on the global and local coordinates, respectively, under arbitrary multi-axial loading conditions. The latter is regarded as a mesh-free periodic domain estimated using fully connected neural network layers by minimizing residuals of Navier's displacement equations of anisotropic microstructured materials for specified macroscopic strains with the help of automatic differentiation. Enabled by the novel use of a periodic layer, the boundary conditions are encoded directly in the DHN architecture which ensures exact satisfaction of the periodicity conditions of displacements and tractions without introducing additional penalty terms. To verify the proposed model, the local field variables and homogenized moduli were examined for various composites against the finite-element technique. We also demonstrate the feasibility of the proposed framework for simulating unit cells with locally irregular fibers via transfer learning and find a significant enhancement in the accuracy of stress field recovery during neural network retraining.

Fichier(s) constituant cette publication

Nom:
LEM3_IJSS_2023_MERAGHNI2 (1).pdf
Taille:
8.930Mo
Format:
PDF
Fin d'embargo:
2024-06-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Physically informed deep homogenization neural network for unidirectional multiphase/multi-inclusion thermoconductive composites 
    Article dans une revue avec comité de lecture
    JIANG, Jindong; WU, Jiajun; CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil (Elsevier BV, 2023-05)
    Elements of the periodic homogenization framework and deep neural network were seamlessly connected for the first time to construct a new micromechanics theory for thermoconductive composites called physically informed ...
  • Adaptive deep homogenization theory for periodic heterogeneous materials 
    Article dans une revue avec comité de lecture
    WU, Jiajun; CHEN, Qiang; JIANG, Jindong; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil (Elsevier BV, 2024-07)
    We present an adaptive physics-informed deep homogenization neural network (DHN) approach to formulate a full-field micromechanics model for elastic and thermoelastic periodic arrays with different microstructures. The ...
  • Elasticity-inspired data-driven micromechanics theory for unidirectional composites with interfacial damage 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; TU, Wenqiong; WU, Jiajun; HE, Zhelong; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; YANG, Zhibo; CHEN, Xuefeng (Elsevier BV, 2024-11)
    We present a novel elasticity-inspired data-driven Fourier homogenization network (FHN) theory for periodic heterogeneous microstructures with square or hexagonal arrays of cylindrical fibers. Towards this end, two ...
  • Nitsche's method enhanced isogeometric homogenization of unidirectional composites with cylindrically orthotropic carbon/graphite fibers 
    Article dans une revue avec comité de lecture
    DU, Xiaoxiao; CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; ZHAO, Gang; CHEN, Xuefeng (Elsevier BV, 2024-08)
    An isogeometric homogenization (IGH) technique is constructed for the homogenization and localization of unidirectional composites with radially or circumferentially orthotropic carbon/graphite fibers. The proposed theory ...
  • Physics-informed deep homogenization approach for random nanoporous composites with energetic interfaces 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; CHEN, Xuefeng; YANG, Zhibo (Elsevier BV, 2025-01)
    This contribution presents a new physics-informed deep homogenization neural network model for identifying local displacement and stress fields, as well as homogenized moduli, of nanocomposites with periodic arrays of ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales