• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire de Mécanique des Fluides de Lille (LMFL)
  • View Item
  • Home
  • Laboratoire de Mécanique des Fluides de Lille (LMFL)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Capillary instability of a two-layer annular film: an airway closure model

Article dans une revue avec comité de lecture
Author
ERKEN, O.
490017 Koç University
ccROMANO, Francesco
531216 Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet [LMFL]
GROTBERG, J.B.
24332 University of Michigan [Ann Arbor]
MURADOGLU, M.
490017 Koç University

URI
http://hdl.handle.net/10985/24444
DOI
10.1017/jfm.2021.1126
Date
2022-01
Journal
Journal of Fluid Mechanics

Abstract

Capillary instability of a two-layer liquid film lining a rigid tube is studied computationally as a model for liquid plug formation and closure of human airways. The two-layer liquid consists of a serous layer, also called the periciliary liquid layer, at the inner side and a mucus layer at the outer side. Together, they form the airway surface liquid lining the airway wall and surrounding an air core. Liquid plug formation occurs due to Plateau–Rayleigh instability when the liquid film thickness exceeds a critical value. Numerical simulations are performed for the entire closure process, including the pre- and post-coalescence phases. The mechanical stresses and their gradients on the airway wall are investigated for physiologically relevant ranges of the mucus-to-serous thickness ratio, the viscosity ratio, and the air–mucus and serous–mucus surface tensions encompassing healthy and pathological conditions of a typical adult human lung. The growth rate of the two-layer model is found to be higher in comparison with a one-layer equivalent configuration. This leads to a much sooner closure in the two-layer model than that in the corresponding one-layer model. Moreover, it is found that the serous layer generally provides an effective protection to the pulmonary epithelium against high shear stress excursions and their gradients. A linear stability analysis is also performed, and the results are found to be in good qualitative agreement with the simulations. Finally, a secondary coalescence that may occur during the post-closure phase is investigated.

Files in this item

Name:
LMFL_JFM_2022_ROMANO.pdf
Size:
3.863Mb
Format:
PDF
Description:
LMFL_JFM_2022_ROMANO
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire de Mécanique des Fluides de Lille (LMFL)

Related items

Showing items related by title, author, creator and subject.

  • The effect of viscoelasticity in an airway closure model 
    Article dans une revue avec comité de lecture
    ccROMANO, Francesco; MURADOGLU, M.; FUJIOKA, H.; GROTBERG, J.B. (Cambridge University Press (CUP), 2021-02)
    Abstract
  • Liquid plug formation in an airway closure model 
    Article dans une revue avec comité de lecture
    ROMANÒ, Francesco; FUJIOKA, H.; MURADOGLU, M.; GROTBERG, J. B. (American Physical Society, 2019)
    The closure of a human lung airway is modeled as an instability of a two-phase flow in a pipe coated internally with a Newtonian liquid. For a thick enough coating, the Plateau-Rayleigh instability creates a liquid plug ...
  • Propagation and rupture of elastoviscoplastic liquid plugs in airway reopening model 
    Article dans une revue avec comité de lecture
    BAHRANI, S. Amir; ccHAMIDOUCHE, Souria; ccMOAZZEN, Masoud; SECK, Khady; DUC, Caroline; MURADOGLU, Metin; GROTBERG, James B.; ccROMANO, Francesco (Elsevier BV, 2022-02)
    The propagation and rupture of mucus plugs in human lungs is investigated experimentally by injecting synthetic mucus in a pre-wetted capillary tube. The rheology of our test liquid is thoroughly characterized, and four ...
  • Effects of elastoviscoplastic properties of mucus on airway closure in healthy and pathological conditions 
    Article dans une revue avec comité de lecture
    ERKEN, O.; FAZLA, B.; MURADOGLU, M.; IZBASSAROV, D.; ccROMANO, Francesco; GROTBERG, J. B. (American Physical Society (APS), 2023-05)
    Airway mucus is a complex material with both viscoelastic and viscoplastic properties that vary with healthy and pathological conditions of the lung. In this study, the effects of these conditions on airway closure are ...
  • Splitting of a three-dimensional liquid plug at an airway bifurcation 
    Article dans une revue avec comité de lecture
    FUJIOKA, Hideki; ccROMANO, Francesco; MURADOGLU, Metin; GROTBERG, James B. (AIP Publishing, 2022-08)
    Employing the moving particles' semi-implicit (MPS) method, this study presents a numerical framework for solving the Navier–Stokes equations for the propagation and the split of a liquid plug through a three-dimensional ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales