Development of a short duration method to assess the envelope thermal performance of multi-family housings
Article dans une revue avec comité de lecture
Date
2023Journal
Building SimulationAbstract
Building energy efficiency is a key factor in reducing CO2 emissions. For this reason, EU member states have developed thermal regulations to ensure building thermal performance.
These results are often based on results achieved with building simulation software during the design stage. However, the actual thermal performance can deviate significantly from the predicted one, and this difference is known as the energy performance gap. Accurate indicators of the actual thermal performance are a valuable tool to guarantee building quality.
These indicators, including the heat transfer coefficient (HTC) and the heat loss coefficient (HLC), can be estimated by the application of in situ methods. As multi-family housing and tertiary sector buildings are an important part of the building stock, mature methods to measure their thermal performance are needed. This paper presents a short-duration method for assessing the HTC in large building typologies using a sampling approach. The method was applied in a four-storey building model under different conditions to study the limits of the method and to improve indicator bias and uncertainty. Indicator quality was strongly influenced by the external weather conditions, the temperature variation during the protocol and the heat exchange with the adjacent apartments. Under winter conditions andwith stable indoor temperatures, the method had a high accuracy when the protocol was applied for half a day. It is recommended that the protocol be used over two days to improve indicator quality under less favorable test conditions.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThermally Activated Building Systems (TABS) are difficult to control due to the time lag between the con- trol sending and the response of the indoor temperature. Energy management of systems having such a high inertia can ...
-
Article dans une revue avec comité de lectureCHEN AUSTIN, Miguel; BOUZOUIDJA, Ryad; BRUNEAU, Denis; SEMPEY, Alain; VOGT WU, Tingting; MORA, Laurent (MDPI AG, 2023-02-27)An experimental study was carried out on a full-scale passive building equipped with global and local instrumentation with the aim of characterizing the energy charge and discharge processes and their coupling to the outdoor ...
-
Article dans une revue avec comité de lectureARAUJO, Steven; DELPOUVE, Nicolas; DHÔTEL, Alexandre; DOMENEK, Sandra; GUINAULT, Alain; DELBREILH, Laurent; DARGENT, Eric (ACS Publications, 2018)The kinetic fragility of a glass-forming liquid is an important parameter to describe its molecular mobility. In most polymers, the kinetic fragility index obtained from the glassy state by thermally stimulated depolarization ...
-
Article dans une revue avec comité de lectureVAROL, N.; DELPOUVE, Nicolas; ARAUJO, Steven; DOMENEK, Sandra; GUINAULT, Alain; GOLOVCHAK, Roman; INGRAM, A.; DELBREILH, Laurent; DARGENT, Eric (Elsevier, 2020)Plasticization of amorphous polylactide shifts the glass transition and extends its temperature range of crystallization to lower temperatures. In this work, we focus on how low−temperature crystallization impacts the ...
-
Article dans une revue avec comité de lectureARAUJO, Steven; DELPOUVE, Nicolas; DOMENEK, Sandra; GUINAULT, Alain; GOLOVCHAK, Roman; SZATANIK, Roman; INGRAM, Adam; FAUCHARD, Cyrille; DELBREILH, Laurent; DARGENT, Eric (American Chemical Society, 2019)The experimental evidence of the increase of activation energy associated with the super Arrhenius behavior governing amorphous polylactide by free volume variations has been obtained through a combination of calorimetric, ...