• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of material parameters in low-data limit: application to gradient-enhanced continua

Article dans une revue avec comité de lecture
Author
NGUYEN, Duc-Vinh
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccJEBAHI, Mohamed
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
CHAMPANEY, Victor
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]
1166977 CNRS@CREATE Ltd.

URI
http://hdl.handle.net/10985/24661
DOI
10.1007/s12289-023-01807-7
Date
2024-01
Journal
International Journal of Material Forming

Abstract

Due to the growing trend towards miniaturization, small-scale manufacturing processes have become widely used in various engineering fields to manufacture miniaturized products. These processes generally exhibit complex size effects, making the behavior of materials highly dependent on their geometric dimensions. As a result, accurate understanding and modeling of such effects are crucial for optimizing manufacturing outcomes and achieving high-performance final products. To this end, advanced gradient-enhanced plasticity theories have emerged as powerful tools for capturing these complex phenomena, offering a level of accuracy significantly greater than that provided by classical plasticity approaches. However, these advanced theories often require the identification of a large number of material parameters, which poses a significant challenge due to limited experimental data at small scales and high computation costs. The present paper aims at evaluating and comparing the effectiveness of various optimization techniques, including evolutionary algorithm, response surface methodology and Bayesian optimization, in identifying the material parameter of a recent flexible gradient-enhanced plasticity model developed by the authors. The paper findings represent an attempt to bridge the gap between advanced material behavior theories and their practical industrial applications, by offering insights into efficient and reliable material parameter identification procedures.

Files in this item

Name:
LEM3_IJMF_2024_NGUYEN.pdf
Size:
1.886Mb
Format:
PDF
Embargoed until:
2024-08-01
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Spatio-temporal physics-informed neural networks to solve boundary value problems for classical and gradient-enhanced continua 
    Article dans une revue avec comité de lecture
    ccNGUYEN, Duc-Vinh; ccJEBAHI, Mohamed; ccCHINESTA SORIA, Francisco (Elsevier BV, 2024-08)
    Recent advances have prominently highlighted physics informed neural networks (PINNs) as an efficient methodology for solving partial differential equations (PDEs). The present paper proposes a proof of concept exploring ...
  • Multiparametric modelling of composite materials based on non-intrusive PGD informed by multiscale analyses: Application for real-time stiffness prediction of woven composites 
    Article dans une revue avec comité de lecture
    EL FALLAKI IDRISSI, Mohammed; PRAUD, Francis; CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco; ccMERAGHNI, Fodil (Elsevier, 2022-09)
    In this paper, a multiparametric solution of the stiffness properties of woven composites involving several microstructure parameters is performed. For this purpose, non-intrusive PGD-based methods are employed. From offline ...
  • Data-Driven Modeling for Multiphysics Parametrized Problems-Application to Induction Hardening Process 
    Article dans une revue avec comité de lecture
    DEROUICHE, Khouloud; GAROIS, Sevan; CHAMPANEY, Victor; DAOUD, Monzer; TRAIDI, Khalil; ccCHINESTA SORIA, Francisco (MDPI AG, 2021)
    Data-driven modeling provides an efficient approach to compute approximate solutions for complex multiphysics parametrized problems such as induction hardening (IH) process. Basically, some physical quantities of interest ...
  • Learning the Parametric Transfer Function of Unitary Operations for Real-Time Evaluation of Manufacturing Processes Involving Operations Sequencing 
    Article dans une revue avec comité de lecture
    LOREAU, Tanguy; CHAMPANEY, Victor; HASCOËT, Nicolas; MOURGUE, Philippe; DUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (MDPI AG, 2021)
    For better designing manufacturing processes, surrogate models were widely considered in the past, where the effect of different material and process parameters was considered from the use of a parametric solution. The ...
  • Engineering empowered by physics-based and data-driven hybrid models: A methodological overview 
    Article dans une revue avec comité de lecture
    CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Springer Science and Business Media LLC, 2022-04-05)
    Smart manufacturing implies creating virtual replicas of the processing operations, taking into account the material dimension and its multi-physics transformation when forming processes operate. Performing efficient, that ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales