Enhancing Operator Engagement during AI-assisted Manufacturing Work Using Optimal State Deviation Feedback System
Communication avec acte
Auteur
Date
2024-02-07Résumé
The integration of Artificial Intelligence (AI) in manufacturing is shifting the focus of operators from manual labor to cognitive supervision roles. While this transition demands more engagement from operators, the less stimulating nature of monitoring tasks has, paradoxically, reduced operator involvement, consequently presenting new challenges in performance maintenance. Addressing this issue, our research adopted an iterative design science methodology to create a biocybernetic system that aims to enhance operator engagement in their evolving workplace. This system leverages physiological signals to intuitively display how much an operator’s engagement level deviates from an ideal state, ensuring operators stay aware of their psychophysiological state of engagement and can quickly adjust to any decreases in engagement. In this paper, we detail the 4-step process that led to the development of the first version of the system. Capitalizing on the physiological differences observed in manufacturing operators during “high” and “low” engagement scenarios, we defined a task-specific Optimal State Deviation Index (OSDI) formula. This formula enabled us to predict participants' engagement states with an 80.95 % success rate in our testing dataset.
Fichier(s) constituant cette publication
- Nom:
- LISPEN_ARCI_2024_JOBLOT.pdf
- Taille:
- 811.5Ko
- Format:
- Description:
- Article de conférence
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lecturePASSALACQUA, Mario; JOBLOT, Laurent; MAGNANI, Florian; PELLERIN, Robert; LEGER, Pierre-Majorique (2024-05-30)Sustaining optimal task engagement is becoming vital in smart factories, where manufacturing operators' roles are increasingly shifting from hands-on machinery tasks to supervising complex automated systems. However, because ...
-
Article dans une revue avec comité de lectureGOUJON, Alexandre; ROSIN, Frédéric; MAGNANI, Florian; LAMOURI, Samir; PELLERIN, Robert; JOBLOT, Laurent (Informa UK Limited, 2024-01-31)The Industry 5.0 concept has placed human needs at the heart of industrial processes. This raises the question of how new technologies can enhance employee decision-making processes and influence the evolution of team ...
-
Communication avec acteROSIN, Frédéric; MAGNANI, Florian; JOBLOT, Laurent; FORGET, Pascal; PELLERIN, Robert; LAMOURI, Samir (Elsevier BV, 2022-10)Industry 4.0 is leading to rethink how operational decisions are made within companies. In particular, it raises the question of the evolution of employee involvement and autonomy in operational decision-making in a Lean ...
-
Chapitre d'ouvrage scientifiqueBOURGAULT, Mario; DANJOU, Christophe; PELLERIN, Robert; PERRIER, Nathalie; BOTON, Conrad; FORGUES, Daniel; IORDANOVA, Ivanka; POIRIER, Erik; RIVEST, Louis; JOBLOT, Laurent (CIRANO, 2021)L’industrie de la construction joue un rôle prépondérant dans l’économie. Malgré son importance, elle fut longtemps décrite comme moins productive et innovante que d’autres secteurs. Depuis quelques années, cette situation ...
-
Article dans une revue avec comité de lectureECHTERNACH--JAUBERT, Marine; PELLERIN, Robert; JOBLOT, Laurent (Elsevier, 2021)For an Engineering, Procurement and Construction Management contract, collaboration between the different actors is essential from the very beginning of the project to consider all the constraints. Working upstream reduces ...