• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modal and nonmodal stability analysis of turbulent stratified channel flows

Article dans une revue avec comité de lecture
Author
VARIALE, Donato
134975 Laboratoire de Dynamique des Fluides [DynFluid]
253558 Polytechnic University of Bari / Politecnico di Bari
ccPARENTE, Enza
134975 Laboratoire de Dynamique des Fluides [DynFluid]
253558 Polytechnic University of Bari / Politecnico di Bari
ccROBINET, Jean-Christophe
134975 Laboratoire de Dynamique des Fluides [DynFluid]
CHERUBINI, Stefania
253558 Polytechnic University of Bari / Politecnico di Bari

URI
http://hdl.handle.net/10985/24881
DOI
10.1103/PhysRevFluids.9.013904
Date
2024-01
Journal
Physical Review Fluids

Abstract

Unstable or optimally growing perturbations of turbulent flows are often representative of the energy-containing coherent structures populating the flow, as for streaks in a turbulent channel. Within this framework, this work aims at studying the modal and nonmodal stability of stably stratified turbulent channel flow, assessing the influence of stratification while changing the friction Richardson number, Riτ, at fixed friction Reynolds number, Reτ. When increasing the stratification of the flow, the energy gain for streamwise independent perturbations at the outer peak increases by two orders of magnitude, and the spanwise wavenumber for which the energy gain peaks reaches values comparable to those reported in the direct numerical simulations of Garcia-Villalba and Del Alamo. At the same time, the value of the optimal gain for the inner peak slightly changes, corroborating the observations made through direct numerical simulation (DNS) about the fact that the wall cycle is not altered by the presence of stratification. Moreover, for nonzero values of the streamwise and spanwise wavenumbers, α and β, the energy gain curve has two peaks, one for shorter target times and α > β, leading to a center-channel temperature peak, and another occurring for α < β at larger target times. In the former case, energy production is mostly linked to velocity production, whereas, in the latter case, the strongest term is that of temperature production, indicating that this mechanism is driven by the increase of the potential energy rather than the kinetic one, and it is intimately linked to the presence of stratification. For strong stratification, the optimal energy gain considerably extends towards higher values of α, leading to energy amplifications reaching three orders of magnitudes for values of α up to 2. The associated optimal perturbations are characterized by temperature patches at the center channel, phase lagged by π/2 with the wall-normal velocity, similarly to gravity waves recovered in the DNS for sufficiently large stratification. However, for large values of β, we observe an increasing asymmetry in the optimal perturbations, probably due to the shielding effect of the core of the channel, as also observed in the DNS of Garcia-Villalba and Del Alamo.

Files in this item

Name:
DYNFLUID_PRF_2024_VARIALE.pdf
Size:
8.527Mb
Format:
PDF
Description:
Modal and nonmodal stability ...
Embargoed until:
2024-07-30
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • Modal and nonmodal stability of a stably stratified boundary layer flow 
    Article dans une revue avec comité de lecture
    PARENTE, Enza; DE PALMA, Pietro; CHERUBINI, Stefania; ccROBINET, Jean-Christophe (American Physical Society, 2020)
    The modal and nonmodal linear stability of a stably stratified Blasius boundary layer flow, composed of a velocity and a thermal boundary layer, is investigated. The temporal and spatial linear stability of such flow is ...
  • Continuing invariant solutions towards the turbulent flow 
    Article dans une revue avec comité de lecture
    PARENTE, Enza; FARANO, Mirko; DE PALMA, Pietro; CHERUBINI, Stefania; ccROBINET, Jean-Christophe (The Royal Society Publishing, 2022-05)
    A new mathematical framework is proposed for characterizing the coherent motion of fluctuations around a mean turbulent channel flow. We search for statistically invariant coherent solutions of the unsteady Reynolds-averaged ...
  • Minimal energy thresholds for sustained turbulent bands in channel flow 
    Article dans une revue avec comité de lecture
    ccPARENTE, Enza; ccROBINET, Jean-Christophe; ccDE PALMA, Paul; CHERUBINI, Stefania (Cambridge University Press (CUP), 2022-05)
    In this work, nonlinear variational optimization is used for obtaining minimal seeds for the formation of turbulent bands in channel flow. Using nonlinear optimization together with energy bisection, we have found that the ...
  • Linear and nonlinear optimal growth mechanisms for generating turbulent bands 
    Article dans une revue avec comité de lecture
    PARENTE, ENZA; DE PALMA, Pietro; CHERUBINI, Stefania; ccROBINET, Jean-Christophe (Cambridge University Press, 2022)
    Recently, many authors have investigated the origin and growth of turbulent bands in shear flows, highlighting the role of streaks and their inflectional instability in the process of band generation and sustainment. ...
  • Global Stability Analyses Unraveling Roughness-induced Transition Mechanisms 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; LERICHE, Emmanuel; ccROBINET, Jean-Christophe; ccLOISEAU, Jean-Christophe (Elsevier, 2015)
    The linear global instability and resulting transition to turbulence induced by a cylindrical roughness element of heighth and diameter d=3h immersed within an incompressible boundary layer flow along a flat plate is ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales