Study of the Thermal History upon Residual Stresses during the Dry Drilling of Inconel 718
Article dans une revue avec comité de lecture
Auteur
Résumé
The main objective of this article was to show for the first time that heat transfer plays a major role in residual stress generation during the dry drilling of Inconel 718, and to propose a numerical strategy capable of simulating such thermo-mechanical phenomena. An X-ray diffraction (XRD) analysis shows that without lubrication, high tensile residual stresses can be observed on the surface of a deep through drilled hole. Such a situation can be highly detrimental for the fatigue lifetime of a mechanical component. A thermal history in five phases is first identified by means of temperature measurements exhibiting an overheating of approximately 500 ∘C on the created hole surface just before the end of the drilling operation. A 3D thermo-viscoplastic model is herein improved in terms of boundary conditions to show that this phenomenon is triggered by the progressive decrease in the Inconel 718 volume under the cutting zone. To the authors’ knowledge, such a phenomenon has never been reported and simulated before in the literature. Then, a 3D thermo-elasto-plastic simulation including elasticity is proposed to compute residual stresses from the thermal results of the previous model. It shows for the first time that the overheating stage induces sufficiently intense plasticity to produce high tensile residual stresses of approximately 900 MPa as we experimentally observed.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication avec acteRANCHIN, Lucas; VIPREY, Fabien; FROMENTIN, Guillaume; MONTEIRO, Eric; LORONG, Philippe; KARAOUNI, Habib; DORLIN, Théo (SSRN, 2023-12-11)The understanding of phenomena related to machining processesintheaerospace industry isstill the subject of study intheresearch community. This is due to the constrained geometric tolerances to ensure optimal performance ...
-
Communication avec acteBONO, Aurélie; COSTES, Jean-Philippe; KARAOUNI, Habib; DORLIN, Théo; FROMENTIN, Guillaume (Elsevier, 2016)Machining of difficult-to-cut materials like Ti6Al4V titanium alloy leads to significant flank wear on the cutting tool. In order to ensure the respect of final part specifications, flank wear has to be controlled. In ...
-
Communication avec acteCHENG, Wenyu; MARTINS DO OUTEIRO, Jose Carlos; COSTES, Jean-Philippe; M’SAOUBI, Rachid; KARAOUNI, Habib; DENGUIR, Lamice; ASTAKHOV, Viktor; AUZENAT, François (Elsevier, 2018)Ti6Al4V titanium alloy is widely used in aero-engines due to its superior performance. However, as a difficult-to-cut alloy, it induces short cutting tool life and poor surface integrity. To improve these process outcomes, ...
-
Communication avec acteForce modelling is a major research topic in machining. Several approaches are used to face with the different needs. Mechanistic models appear to be an easier and rapid way for computing cutting forces; nevertheless they ...
-
Communication avec acteCHENG, Wenyu; MARTINS DO OUTEIRO, Jose Carlos; COSTES, Jean-Philippe; M’SAOUBI, Rachid; KARAOUNI, Habib; DIETRICH, Stefan; MARCON, Bertrand; ROSA, Pedro (Elsevier BV, 2019)This paper deals with the determination of the constitutive model coefficients used in machining simulations. An optimization-based procedure is developed and applied to constitutive model coefficients determination of ...