Two-temperature ablative material response model with application to Stardust and MSL atmospheric entries
Article dans une revue avec comité de lecture
Date
2023-06Journal
Aerospace Science and TechnologyAbstract
Ablative material response codes currently in use consider local thermal equilibrium between the solid phases and the pyrolysis gases. For typical entry conditions, this hypothesis may be justified by the fact that the thermal Peclet number within the pores is small, which is a necessary condition for thermal equilibrium in non-reactive materials. However, the validity of this analysis may fall under some circumstances. The thermal Peclet number may become large due to high pyrolysis gas velocities. Additional physical phenomena not accounted for in the Peclet analysis may become non-negligible, such as the change of enthalpy due to chemical reactions. The objective of this study is two-fold. First, a detailed two temperature material response model for porous reactive materials is presented. This model has been implemented and made available in the Porous material Analysis Toolbox based on OpenFOAM (PATO). Second, the model is applied to the Theoretical Ablative Composite for Open Testing (TACOT) in a wide range of conditions to assess the true range of validity of the thermal equilibrium hypothesis. Simulations are carried out on the Stardust and Mars Science Laboratory (MSL) atmospheric entries. The main design variables have been monitored and compared between the two models: temperature evolution and species concentration within the material, pyrolysis gas blowing rate, extension of the pyrolysis zone, and wall recession due to ablation. Results show that under chemical equilibrium conditions, no significant deviation in the monitored quantities are observed, while under chemical non-equilibrium conditions there is a large impact on the species concentration.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThe numerical simulation of fire propagation requires capturing the coupling between wood pyrolysis, which leads to the production of various gaseous species, and the combustion of these species in the flame, which produces ...
-
Article dans une revue avec comité de lectureSCANDELLI, Hermes; AHMADI-SENICHAULT, Azita; LEVET, C.; LACHAUD, Jean (Springer Science and Business Media LLC, 2022-04-13)The direct proportionality between the flow rate and the pressure gradient of creeping flows was experimentally discovered by H. Darcy in the 19th century and theoretically justified a couple of decades ago using upscaling ...
-
Article dans une revue avec comité de lecturen thermal protection systems (TPS), Darcy’s law or Darcy-Forchheimer’s law is employed to model the pyrolysis gas flow within the anisotropic porous ablator depending on the flow regime considered. A key challenge with ...
-
Article dans une revue avec comité de lectureHigh-temperature thermal energy storage (TES) in packed beds is gaining interest for industrial energy recovery. The wide range of temperature distributions causes significant variations in thermophysical properties of ...
-
Article dans une revue avec comité de lectureWith the rising cost of energy and the advancement of corporate social responsibility, there is a growing interest in addressing the challenge of recovering and storing high-temperature waste heat. Sensible heat storage ...