• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
  • Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unlocking the power of LiOH: Key to next-generation ultra-compact thermal energy storage systems

Article dans une revue avec comité de lecture
Author
ccACHCHAQ, Fouzia
1002421 Institut de Mécanique et d'Ingénierie [I2M]
MOON, S.-C.
LEGROS, P.
461 Laboratoire de chimie de coordination [LCC]
219555 Laboratoire Culture, sport, santé, société - UFC (UR 4660) [C3S]
406917 Plateforme Aquitaine de Caractérisation des Matériaux [PLACAMAT]

URI
http://hdl.handle.net/10985/25627
DOI
10.1016/j.heliyon.2024.e33992
Research data linked to this publication
https://www.cell.com/cms/10.1016/j.heliyon.2024.e33992/attachment/ee0619d1-30f8-4e19-8b68-d300d9b89ecc/mmc1.docx
Date
2024-07
Journal
Heliyon

Abstract

This study explores the potential of untapped lithium hydroxide (LiOH) as a phase change material for thermal energy storage. By overcoming the challenges associated with the liquid LiOH leakage, we successfully thermal-cycled LiOH in a laboratory scale experimentation, and observed its stability (>500 thermal cycles), without chemical decomposition. This step has never been performed to date. Its solid-to-liquid reversible transitions temperatures and related solidification/melting enthalpies values have been verified. Then, the first experimental characterization of LiOH's thermal properties shows unexpected values for its heat capacity, thermal conductivity and diffusivity, in contradiction with the few ones available in literature. This opens avenues for LiOH's applications for the storage of sensible and latent heat, as shown through the increased cycle efficiency potential of a thermal energy storage system if based on its energy storage capacity; up to six times more volumetric energy density compared to traditional Solar Salt-based systems used in the solar tower plant (4.5 GJ/m3 vs. 0.76 GJ/m3 over 1000 thermal cycles). Additionally, we observed a softening phenomenon that occurs inconsistently during heating, but which may account for its excellent melting properties and the interplay with other raw chemicals. This new insight contributes certainly to the underlying mechanisms in the synthesis of another promising heat storage material in development: the peritectic compound Li4Br(OH)3. This pioneering work suggests LiOH as a promising ultra-compact thermal energy storage material for filling the intermediary gap from current to next-generation solar power plants, although its large-scale application requires further investigation to achieve economic viability.

Files in this item

Name:
I2M-Acchaq-2024.pdf
Size:
4.607Mb
Format:
PDF
View/Open
CC BY
This document is available under CC BY license

Collections

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)

Related items

Showing items related by title, author, creator and subject.

  • Transient Thermal Characterization of Small Particles in Fluidic or Acoustic Levitation 
    Communication avec acte
    BATSALE, Jean-Christophe; ccAOUALI, Abderezak; ccACHCHAQ, Fouzia; ccSOMMIER, Alain (MDPI, 2024-07-04)
    Putting small particles in levitation and in transient thermal imbalance in a gas has several advantages. This avoids chemical and thermal pollution through contact with a solid wall. The large exchange surface between the ...
  • Multiscale aspects of the response of a temperature field to a pulsed laser or a periodic laser spot: some applications for IR thermography for non destructive evaluation, terahertz tomography, super-resolution, and microscale heat transfer 
    Communication avec acte
    BATSALE, Jean-Christophe; ccABISSET-CHAVANNE, Emmanuelle; ccACHCHAQ, Fouzia; ccAOUALI, Abderezak; ccCHEVALIER, Stéphane; ccGROZ, Marie-Marthe; ccMAIRE, Jeremie; ccSOMMIER, Alain (SPIE, 2023-06-12)
    The study of the response of a temperature field (recorded from IR cameras) to a laser spot heating is increasingly used for NDE (Non Destructive Evaluation) applications. The most classical type of application is to use ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales