Rapid Biofabrication of an Advanced Microphysiological System Mimicking Phenotypical Heterogeneity and Drug Resistance in Glioblastoma
Article dans une revue avec comité de lecture
Date
2024-08-05Journal
Advanced Healthcare MaterialsRésumé
AbstractMicrophysiological systems (MPSs) reconstitute tissue interfaces and organ functions, presenting a promising alternative to animal models in drug development. However, traditional materials like polydimethylsiloxane (PDMS) often interfere by absorbing hydrophobic molecules, affecting drug testing accuracy. Additive manufacturing, including 3D bioprinting, offers viable solutions. GlioFlow3D, a novel microfluidic platform combining extrusion bioprinting and stereolithography (SLA) is introduced. GlioFlow3D integrates primary human cells and glioblastoma (GBM) lines in hydrogel‐based microchannels mimicking vasculature, within an SLA resin framework using cost‐effective materials. The study introduces a robust protocol to mitigate SLA resin cytotoxicity. Compared to PDMS, GlioFlow3D demonstrated lower small molecule absorption, which is relevant for accurate testing of small molecules like Temozolomide (TMZ). Computational modeling is used to optimize a pumpless setup simulating interstitial fluid flow dynamics in tissues. Co‐culturing GBM with brain endothelial cells in GlioFlow3D showed enhanced CD133 expression and TMZ resistance near vascular interfaces, highlighting spatial drug resistance mechanisms. This PDMS‐free platform promises advanced drug testing, improving preclinical research and personalized therapy by elucidating complex GBM drug resistance mechanisms influenced by the tissue microenvironment.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureURCUN, Stéphane; ROHAN, Pierre-Yves; SCIUMÈ, Giuseppe; BORDAS, Stéphane P.A. (Elsevier BV, 2021)This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot’s consolidation theory, we tackle ...
-
Article dans une revue avec comité de lectureLAVIGNE, Thomas;
URCUN, Stéphane;
ROHAN, Pierre-Yves;
SCIUME, Giuseppe;
BAROLI, Davide; BORDAS, Stéphane Pierre Alain (Elsevier, 2023-05)
Soft biological tissues demonstrate strong time-dependent and strain-rate mechanical behavior, arising from their intrinsic visco-elasticity and fluid–solid interactions. The time-dependent mechanical properties of soft ... -
Article dans une revue avec comité de lectureBiomechanical parameters have the potential to be used as physical markers for prevention and diagnosis. Finite Element Analysis (FEA) is a widely used tool to evaluate these parameters in vivo. However, the development ...
-
Article dans une revue avec comité de lecture
URCUN, Stéphane;
BAROLI, Davide;
ROHAN, Pierre-Yves;
SKALLI, Wafa;
LUBRANO, Vincent; BORDAS, Stéphane Pierre Alain;
SCIUME, Giuseppe (Elsevier BV, 2023-03)
We propose a novel image-informed glioblastoma mathematical model within a reactive multiphase poromechanical framework. Poromechanics offers to model in a coupled manner the interplay between tissue deformation and ... -
Article dans une revue avec comité de lectureThis paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot’s consolidation theory, we tackle ...


