• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • Voir le document
  • Accueil de SAM
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Fault Diagnosis in Process Industries with Internal Variables of Model Predictive Control

Article dans une revue avec comité de lecture
Auteur
ccDIALLO, Abdoul Rahime
107452 Laboratoire de Conception Fabrication Commande [LCFC]
HOMRI, Lazhar
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccDANTAN, Jean-Yves
107452 Laboratoire de Conception Fabrication Commande [LCFC]
BONNET, Frédéric
36484 ArcelorMittal Maizières Research SA
BOEUF, Thomas
36484 ArcelorMittal Maizières Research SA

URI
http://hdl.handle.net/10985/25701
DOI
10.1016/j.ifacol.2024.07.274
Date
2024-08
Journal
IFAC-PapersOnLine

Résumé

This paper introduces the use of internal variables, estimated through Model Predictive Control (MPC), for fault detection and diagnosis in process industries. To do so, a data-driven methodology is proposed. Three reconstruction techniques - Principal Component Analysis (PCA), Kernel Independent Component Analysis (KICA), and Autoencoder (AE) - are compared using data sets that combine plant measurements with internal variables. The methodology was tested on a hot-dip galvanizing line dedicated to the production of automotive steel and compared to the use of only plant measurements for the development of the reconstruction methods. The results showed that the incorporation of internal variables significantly enhances the overall fault detection rate. Finally, contribution plots were used to identify thefaulty sensor.

Fichier(s) constituant cette publication

Nom:
LCFC_ELSEVIER_2024_DIALLO.pdf
Taille:
963.8Ko
Format:
PDF
Voir/Ouvrir
CC BY-NC-ND
Ce document est diffusé sous licence CC BY-NC-ND

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire de Conception Fabrication Commande (LCFC)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Geometrical variations management for additive manufactured product 
    Article dans une revue avec comité de lecture
    HUANG, Zhicheng; GOKA, Edoh; BONNET, Nicolas; ccDANTAN, Jean-Yves; ccETIENNE, Alain; ccHOMRI, Lazhar; ccRIVETTE, Mickaël (Elsevier, 2017)
    Additive manufacturing (AM) became an advanced research topic due to its ability to manufacture complex shapes. But the ability to achieve predictable and repeatable shapes is critical. Therefore, to optimize the design ...
  • Review of data mining applications for quality assessment in manufacturing industry: Support Vector Machines 
    Article dans une revue avec comité de lecture
    ROSTAMI, Hamideh; ccDANTAN, Jean-Yves; ccHOMRI, Lazhar (EDP sciences, 2015)
    In many modern manufacturing industries, data that characterize the manufacturing process are electronically collected and stored in the databases. Due to advances in data collection systems and analysis tools, data mining ...
  • Tolerance analysis — Form defects modeling and simulation by modal decomposition and optimization 
    Article dans une revue avec comité de lecture
    GOKA, Edoh; LEVASSEUR, Guillaume; ccDANTAN, Jean-Yves; ccHOMRI, Lazhar (Elsevier, 2017)
    Tolerance analysis aims on checking whether specified tolerances enable functional and assembly requirements. The tolerance analysis approaches discussed in literature are generally assumed without the consideration of ...
  • Comparison of optimization techniques in a tolerance analysis approach considering form defects 
    Communication avec acte
    LEVASSEUR, Guillaume; ccDANTAN, Jean-Yves; ccHOMRI, Lazhar (Elsevier, 2016)
    In tolerancing analysis area, the most various existing approaches do not take form defects of parts into consideration. As high precisions assemblies cannot be analyzed with the assumption that form defects are negligible, ...
  • Probabilistic-based approach using Kernel Density Estimation for gap modeling in a statistical tolerance analysis 
    Article dans une revue avec comité de lecture
    GOKA, Edoh; BEAUREPAIRE, Pierre; ccDANTAN, Jean-Yves; ccHOMRI, Lazhar (Elsevier, 2019)
    The statistical tolerance analysis has become a key element used in the design stage to reduce the manufacturing cost, the rejection rate and to have high quality products. One of the frequently used methods is the Monte ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales