A Parsimonious Separated Representation Empowering PINN–PGD-Based Solutions for Parametrized Partial Differential Equations
Article dans une revue avec comité de lecture
Résumé
The efficient solution (fast and accurate) of parametric partial differential equations (pPDE) is of major interest in many domains of science and engineering, enabling evaluations of the quantities of interest, optimization, control, and uncertainty propagation—all them under stringent real-time constraints. Different methodologies have been proposed in the past within the model order reduction (MOR) community, based on the use of reduced bases (RB) or the separated representation at the heart of the so-called proper generalized decompositions (PGD). In PGD, an alternate-direction strategy is employed to circumvent the integration issues of operating in multi-dimensional domains. Recently, physics informed neural networks (PINNs), a particular collocation schema where the unknown field is approximated by a neural network (NN), have emerged in the domain of scientific machine learning. PNNs combine the versatility of NN-based approximation with the ease of collocating pPDE. The present paper proposes a combination of both procedures to find an efficient solution for pPDE, that can either be viewed as an efficient collocation procedure for PINN, or as a monolithic PGD that bypasses the use of the fixed-point alternated directions.
Fichier(s) constituant cette publication
- Nom:
- PIMM_JM_2024_GHNATIOS.pdf
- Taille:
- 2.989Mo
- Format:
- Description:
- A Parsimonious Separated Repre ...
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureGHNATIOS, Chady; ABISSET-CHAVANNE, Emmanuelle; AMMAR, Amine; CUETOS, Elias; DUVAL, Jean-Louis; CHINESTA SORIA, Francisco (Elsevier, 2019)This work aims at proposing a new procedure for parametric problems whose separated representation has been considered difficult, or whose SVD compression impacted the results in terms of performance and accuracy. The ...
-
Article dans une revue avec comité de lectureGHNATIOS, Chady; DELPLACE, Frank; BARASINSKI, Anais; DUVAL, Jean-Louis; CUETO, Elias; AMMAR, Amine; CHINESTA SORIA, Francisco (Wiley, 2020)Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion ...
-
Article dans une revue avec comité de lectureSIMACEK, Pavel; ADVANI, Suresh G.; GHNATIOS, Chady; CHINESTA SORIA, Francisco (Springer Verlag, 2020)In this work we develop a void filling and void motion dynamics model using volatile pressure and squeeze flow during tape placement process. The void motion and filling are simulated using a non-local model where their ...
-
Article dans une revue avec comité de lectureREILLE, Agathe; HASCOET, Nicolas; CUETO, Elias; DUVAL, Jean-Louis; KEUNINGS, Roland; GHNATIOS, Chady; AMMAR, Amine; CHINESTA SORIA, Francisco (Elsevier Masson, 2019)The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then ...
-
Article dans une revue avec comité de lectureTERTRAIS, Hermine; IBANEZ PINILLO, Ruben; BARASINSKI, Anais; GHNATIOS, Chady; CHINESTA SORIA, Francisco (Elsevier, 2019)Many electrical and structural components are constituted of a stacking of multiple thin layers with different electromagnetic, mechanical and thermal properties. When 3D descriptions become compulsory the approximation ...