• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Empowering optimal transport matching algorithm for the construction of surrogate parametric metamodel

Article dans une revue avec comité de lecture
Auteur
ccJACOT, Maurine
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
505477 Safran Tech
CHAMPANEY, Victor
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccTORREGROSA JORDAN, Sergio
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccCORTIAL, Julien
505477 Safran Tech
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
1166977 CNRS@CREATE Ltd.

URI
http://hdl.handle.net/10985/25778
DOI
10.1051/meca/2024001
Date
2024-03
Journal
Mechanics & Industry

Résumé

Resolving Partial Differential Equations (PDEs) through numerical discretization methods like the Finite Element Method presents persistent challenges associated with computational complexity, despite achieving a satisfactory solution approximation. To surmount these computational hurdles, interpolation techniques are employed to precompute models offline, facilitating rapid online solutions within a metamodel. Probability distribution frameworks play a crucial role in data modeling across various fields such as physics, statistics, and machine learning. Optimal Transport (OT) has emerged as a robust approach for probability distribution interpolation due to its ability to account for spatial dependencies and continuity. However, interpolating in high-dimensional spaces encounters challenges stemming from the curse of dimensionality. The article offers insights into the application of OT, addressing associated challenges and proposing a novel methodology. This approach utilizes the distinctive arrangement of an ANOVA-based sampling to interpolate between more than two distributions using a step-by-step matching algorithm. Subsequently, the ANOVA-PGD method is employed to construct the metamodel, providing a comprehensive solution to address the complexities inherent in distribution interpolation.

Fichier(s) constituant cette publication

Nom:
PIMM_MI_2024_JACOT.pdf
Taille:
8.588Mo
Format:
PDF
Description:
Empowering optimal transport ...
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Hybrid twins based on optimal transport 
    Article dans une revue avec comité de lecture
    TORREGROSA, Sergio; CHAMPANEY, Victor; ccAMMAR, Amine; HERBERT, Vincent; ccCHINESTA SORIA, Francisco (Elsevier BV, 2022-10)
    Nowadays data is acquiring an indisputable importance in every field including engineering. In the past, experimental data was used to calibrate state-of-the art models. Once the model was optimally calibrated, numerical ...
  • Surrogate parametric metamodel based on Optimal Transport 
    Article dans une revue avec comité de lecture
    TORREGROSA, Sergio; CHAMPANEY, Victor; ccAMMAR, Amine; HERBERT, Vincent; ccCHINESTA SORIA, Francisco (Elsevier B.V., 2021-11-30)
    The description of a physical problem through a model necessarily involves the introduction of parameters. Hence, one wishes to have a solution of the problem that is a function of all these parameters: a parametric ...
  • Parametric Damage Mechanics Empowering Structural Health Monitoring of 3D Woven Composites 
    Article dans une revue avec comité de lecture
    ccJACOT, Maurine; CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco; ccCORTIAL, Julien (2023)
    This paper presents a data-driven structural health monitoring (SHM) method by the use of so-called reduced-order models relying on an offline training/online use for unidirectional fiber and matrix failure detection in a ...
  • Empowering PGD-based parametric analysis with Optimal Transport 
    Article dans une revue avec comité de lecture
    ccMUNOZ, David; ccTORREGROSA JORDAN, Sergio; ALLIX, Olivier; ccCHINESTA SORIA, Francisco (Elsevier BV, 2024-01)
    The Proper Generalized Decomposition (PGD) is a Model Order Reduction framework that has been proposed to be able to do parametric analysis of physical problems. These parameters may include material properties, boundary ...
  • Regularized regressions for parametric models based on separated representations 
    Article dans une revue avec comité de lecture
    ccSANCARLOS, Abel; CHAMPANEY, Victor; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (Springer Open, 2023-03)
    Regressions created from experimental or simulated data enable the construction of metamodels, widely used in a variety of engineering applications. Many engineering problems involve multi-parametric physics whose corresponding ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales