• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid Twins Modeling of a High-Level Radioactive Waste Cell Demonstrator for Long-Term Temperature Monitoring and Forecasting

Article dans une revue avec comité de lecture
Auteur
ccMUNOZ, David
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccTHOMAS, Anoop Ebey
564849 ESI Group [ESI Group]
ccCOTTON, Julien
12854 Agence Nationale pour la Gestion des Déchets Radioactifs [ANDRA]
BERTRAND, Johan
12854 Agence Nationale pour la Gestion des Déchets Radioactifs [ANDRA]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]

URI
http://hdl.handle.net/10985/25868
DOI
10.3390/s24154931
Date
2024-07
Journal
Sensors

Résumé

Monitoring a deep geological repository for radioactive waste during the operational phases relies on a combination of fit-for-purpose numerical simulations and online sensor measurements, both producing complementary massive data, which can then be compared to predict reliable and integrated information (e.g., in a digital twin) reflecting the actual physical evolution of the installation over the long term (i.e., a century), the ultimate objective being to assess that the repository components/processes are effectively following the expected trajectory towards the closure phase. Data prediction involves using historical data and statistical methods to forecast future outcomes, but it faces challenges such as data quality issues, the complexity of real-world data, and the difficulty in balancing model complexity. Feature selection, overfitting, and the interpretability of complex models further contribute to the complexity. Data reconciliation involves aligning model with in situ data, but a major challenge is to create models capturing all the complexity of the real world, encompassing dynamic variables, as well as the residual and complex near-field effects on measurements (e.g., sensors coupling). This difficulty can result in residual discrepancies between simulated and real data, highlighting the challenge of accurately estimating real-world intricacies within predictive models during the reconciliation process. The paper delves into these challenges for complex and instrumented systems (multi-scale, multi-physics, and multi-media), discussing practical applications of machine and deep learning methods in the case study of thermal loading monitoring of a high-level waste (HLW) cell demonstrator (called ALC1605) implemented at Andra’s underground research laboratory.

Fichier(s) constituant cette publication

Nom:
PIMM_S_2024_MUNOZ.pdf
Taille:
27.02Mo
Format:
PDF
Description:
Estimating Network Lifetime of ...
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Assessing Sensor Integrity for Nuclear Waste Monitoring Using Graph Neural Networks 
    Article dans une revue avec comité de lecture
    ccHEMBERT, Pierre; ccGHNATIOS, Chady; COTTON, Julien; ccCHINESTA SORIA, Francisco (MDPI AG, 2024-02)
    A deep geological repository for radioactive waste, such as Andra’s Cigéo project, requires long-term (persistent) monitoring. To achieve this goal, data from a network of sensors are acquired. This network is subject to ...
  • Parametric Damage Mechanics Empowering Structural Health Monitoring of 3D Woven Composites 
    Article dans une revue avec comité de lecture
    ccJACOT, Maurine; CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco; ccCORTIAL, Julien (2023)
    This paper presents a data-driven structural health monitoring (SHM) method by the use of so-called reduced-order models relying on an offline training/online use for unidirectional fiber and matrix failure detection in a ...
  • Empowering optimal transport matching algorithm for the construction of surrogate parametric metamodel 
    Article dans une revue avec comité de lecture
    ccJACOT, Maurine; CHAMPANEY, Victor; ccTORREGROSA JORDAN, Sergio; ccCORTIAL, Julien; ccCHINESTA SORIA, Francisco (EDP Sciences, 2024-03)
    Resolving Partial Differential Equations (PDEs) through numerical discretization methods like the Finite Element Method presents persistent challenges associated with computational complexity, despite achieving a satisfactory ...
  • Shrinkage porosity prediction empowered by physics-based and data-driven hybrid models 
    Article dans une revue avec comité de lecture
    ccNOURI, Madyen; ccARTOZOUL, Julien; CAILLAUD, Aude; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco; KÖSER, Ole (Springer Science and Business Media LLC, 2022-03-25)
    Several defects might affect a casting part and degrade its quality and the process efficiency. Porosity formation is one of the major defects that can appear in the resulting product. Thus, several research studies aimed ...
  • Manifold learning for coherent design interpolation based on geometrical and topological descriptors 
    Article dans une revue avec comité de lecture
    ccMUNOZ, David; ccALLIX, Olivier; ccCHINESTA SORIA, Francisco; ccRÓDENAS, Juan José (2023)
    In the context of intellectual property in the manufacturing industry, know-how is referred to practical knowledge on how to accomplish a specific task. This know-how is often difficult to be synthesised in a set of rules ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales