Physics-informed deep homogenization approach for random nanoporous composites with energetic interfaces
Article dans une revue avec comité de lecture
Date
2025-01Journal
Engineering Applications of Artificial IntelligenceRésumé
This contribution presents a new physics-informed deep homogenization neural network model for identifying local displacement and stress fields, as well as homogenized moduli, of nanocomposites with periodic arrays of porosities under general loading conditions. Notably, it accounts for the surface elasticity effect, utilizing the Gurtin-Murdoch interface theory. First of all, a fully connected neural network model is established that maps the spatial coordinates, passing first through several sinusoidal functions, to the microscopic displacements. The loss function is formulated as the weighted sum of residuals of Navier-Cauchy equations in the bulk domains and the Young-Laplace equations on the energetic surfaces, evaluated on separate sets of collocation points. To more effectively predict stress concentrations inside the microstructures, we introduce fully trainable weights to each collocation point. The capacity and effectiveness of the new homogenization technique for capturing the size-dependent local and global response of nanocomposites with distinct pore sizes and shapes are verified upon extensive comparisons with the finite-element benchmark results, under various loading conditions. New results showcase the proposed theory’s ability to model random distributions of nano-porosities with a high degree of accuracy, a task not easily achievable with alternative techniques except for the specialized finite-element method.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureCHEN, Qiang; TU, Wenqiong; WU, Jiajun; HE, Zhelong; CHATZIGEORGIOU, George; MERAGHNI, Fodil; YANG, Zhibo; CHEN, Xuefeng (Elsevier BV, 2024-11)We present a novel elasticity-inspired data-driven Fourier homogenization network (FHN) theory for periodic heterogeneous microstructures with square or hexagonal arrays of cylindrical fibers. Towards this end, two ...
-
Article dans une revue avec comité de lectureDU, Xiaoxiao; CHEN, Qiang; CHATZIGEORGIOU, George; MERAGHNI, Fodil; ZHAO, Gang; CHEN, Xuefeng (Elsevier BV, 2024-08)An isogeometric homogenization (IGH) technique is constructed for the homogenization and localization of unidirectional composites with radially or circumferentially orthotropic carbon/graphite fibers. The proposed theory ...
-
Article dans une revue avec comité de lectureIn this contribution, a probabilistic micromechanics damage framework is presented to predict the macroscopic stress-strain response and progressive damage in unidirectional glass-reinforced thermoplastic polymer composites. ...
-
Communication avec acteCHEN, Qiang; CHATZIGEORGIOU, George; ROBERT, Gilles; MERAGHNI, Fodil (Association pour les MAtériaux Composites (AMAC), 2023-07)This work proposes a probabilistic micromechanics damage framework to predict the uniaxial and cyclic stress-strain response and progressive damage in random glass-reinforced polyamide composites. Motivated by different ...
-
Article dans une revue avec comité de lectureCHEN, Qiang; CHATZIGEORGIOU, George; ROBERT, Gilles; MERAGHNI, Fodil (Springer Science and Business Media LLC, 2023-01)An accelerated micromechanics framework based on the extended Mori–Tanaka transformation field analysis (TFA) and cycle jump technique is proposed to predict the homogenized response of short glass fiber-reinforced polyamide ...