• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Convolutional Neural Network for the Classification of the Control Mode of Grid-Connected Power Converters

Article dans une revue avec comité de lecture
Auteur
OUALI, Rabah
410272 Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
ccLEGRY, Martin
405582 L2EP - Équipe Réseaux
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
DIEULOT, Jean-Yves
410272 Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
YIM, Pascal
410272 Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
ccGUILLAUD, Xavier
405582 L2EP - Équipe Réseaux
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
ccCOLAS, Frédéric
405582 L2EP - Équipe Réseaux
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]

URI
http://hdl.handle.net/10985/25982
DOI
10.3390/en17246458
Date
2024-12
Journal
ENERGIES

Résumé

With the integration of power converters into the power grid, it becomes crucial for the Transmission System Operator (TSO) to ascertain whether they are operating in Grid Forming or Grid Following modes. Due to intellectual properties, classification can only be performed based on non-intrusive measurements and models, such as admittance at the PCC. This classification poses a challenge as the TSO lacks precise knowledge of the actual control structures and algorithms. This paper introduces a novel classification algorithm based on Convolutional Neural Networks (CNN), capable of detecting patterns in sequential data. The proposed CNN utilizes a new architecture to separate admittances along the d and q axes, and a decision layer allows to determine the correct converter mode. The performance of the proposed CNN model was assessed through two tests and compared to the traditional feedforward model. The proposed CNN architecture demonstrates significant classification capabilities, as it is able to identify the control mode of the converter even when its control structure is not part of the training dataset.

Fichier(s) constituant cette publication

Nom:
L2EP_ENERGIES_2024_LEGRY.pdf
Taille:
2.921Mo
Format:
PDF
Description:
main article
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • A Two-layer Model Predictive Control Based Secondary Control with Economic Performance Tracking for Islanded Microgrids 
    Communication avec acte
    LEGRY, Martin; COLAS, Frédéric; SAUDEMONT, Christophe; DIEULOT, Jean-Yves; DUCARME, Olivier (IEEE, 2018)
    This paper proposes a two-layer microgrid supervisor based on Model Predictive Control (MPC). The supervisor in the upper layer relies on an economical optimization that considers the cost of energy and the load and ...
  • Non-Linear Primary Control Mapping for Droop-Like Behavior of Microgrid Systems 
    Article dans une revue avec comité de lecture
    LEGRY, Martin; DIEULOT, Jean-Yves; COLAS, Frederic; SAUDEMONT, Christophe; DUCARME, Olivier (Institute of Electrical and Electronics Engineers (IEEE), 2020)
    Interconnecting microgrids in LV power system presents appealing features such as self-healing or power quality. When networked microgrids are not connected to a strong utility grid, their Point of Common Coupling (PCC) ...
  • Mixed integer quadratic programming receding horizon microgrid supervisor 
    Communication avec acte
    LEGRY, Martin; COLAS, Frédéric; SAUDEMONT, Christophe; DIEULOT, Jean-Yves; DUCARME, Olivier (IEEE, 2019)
    This paper proposes to optimize the real time operation of a microgrid controlled with a two-layer Model Predictive Controller supervisor. Based on the classical decomposition of control level, the proposed supervisor ...
  • Confidence Level Optimization of DG Piecewise Affine Controllers in Distribution Grids 
    Article dans une revue avec comité de lecture
    BUIRE, Jerome; COLAS, Frédéric; DIEULOT, Jean-Yves; DE ALVARO, Leticia; GUILLAUD, Xavier (Institute of Electrical and Electronics Engineers, 2019)
    Distributed generators (DGs) reactive powers are controlled to mitigate voltage overshoots in distribution grids with stochastic power production and consumption. Classical DGs controllers may embed piecewise affine laws ...
  • Convex formulation of confidence level optimization of DG affine reactive power controllers in distribution grids 
    Article dans une revue avec comité de lecture
    BUIRE, Jérôme; DIEULOT, Jean-Yves; COLAS, Frédéric; GUILLAUD, Xavier; DE ALVARO, Léticia (Elsevier, 2020)
    Volatile productions and consumptions generate a stochastic behavior of distribution grids and make its supervision difficult to achieve. Usually, the Distributed Generators reactive powers are adjusted to perform decentralized ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales