• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-scale fatigue damage analysis in filament-wound carbon fiber reinforced epoxy composites for hydrogen storage tanks

Article dans une revue avec comité de lecture
Author
FEKI, Imen
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccSHIRINBAYAN, Mohammadali
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
NOUIRA, Samia
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
TIE BI, Robert
367671 FAURECIA
MAESO, Jean-Baptiste
367671 FAURECIA
ccTHOMAS, Cedric
367671 FAURECIA
ccFITOUSSI, Joseph
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/26083
DOI
10.1016/j.jcomc.2024.100537
Date
2024-10
Journal
Composites Part C: Open Access

Abstract

This article presents the findings of a multi-scale experimental study on carbon fiber-reinforced epoxy composites (CFRP) used in lightweight hydrogen storage pressure vessels produced via filament winding. The research employs a combination of tension-tension load-controlled fatigue tests and high-resolution physical-chemical characterization and porosity quantification to assess the impact of porosity on mechanical performance. The findings demonstrate that porosity has a detrimental impact on mechanical properties, acting as nucleation sites for damage mechanisms such as crack initiation, fiber-matrix separation and fiber breakage. At the mesoscopic level, microdefects coalesce into transverse cracks and delamination, resulting in complex failure modes under cyclic loading. The results of the tensile tests demonstrated that the orientation of the fibers has a significant impact on the mechanical behavior of the material. The ±15° configuration demonstrated superior tensile strength and modulus, while the ±30° and multilayer configurations exhibited higher ductility. The results of the fatigue testing confirmed that fiber orientation has a significant impact on fatigue life, with the ±15° configuration proving to be the most resistant. Microscopic analysis indicated that pores act as damage initiation points, accelerating failure through matrix cracking, fiber-matrix debonding, and delamination. This study highlights the need for improved porosity control during manufacturing to enhance the durability of hydrogen storage systems. Additionally, it provides valuable insights for optimizing fiber orientation to improve fatigue performance in practical applications.

Files in this item

Name:
PIMM_2024_Shirinbayan.pdf
Size:
15.51Mb
Format:
PDF
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Investigation of manufacturing process effects on microstructure and fatigue prediction in composite automotive tailgate design 
    Article dans une revue avec comité de lecture
    ccFITOUSSI, Joseph; ccNOUIRA, Samia; ccBENFRIHA, Khaled; LARIBI, Mohamed-Amine; KALLEL, Achraf; TIE BI, Robert; ccSHIRINBAYAN, Mohammadali (Springer, 2024-01)
    Manufacturing processes significantly influence microstructural variations in short fiber reinforced composites, which affect damage characteristics and fatigue life. Accurate fatigue life prediction is critical, especially ...
  • Microstructure dependent fatigue life prediction for short fibers reinforced composites: Application to sheet molding compounds 
    Article dans une revue avec comité de lecture
    LARIBI, Mohamad-Amine; TAMBOURA, Sahbi; ccSHIRINBAYAN, Mohammadali; BI, R.Tie; BEN DALI, Hachmi; ccTCHARKHTCHI, Abbas; ccFITOUSSI, Joseph (Elsevier, 2020)
    Because of the high variability of SMC microstructure due to material flow during thermoforming, fatigue life prediction in real automotive structure represents a huge challenge. In this paper, we present a two-step ...
  • Modeling of Short Fiber Reinforced Polymer Composites Subjected to Multi‐block Loading 
    Article dans une revue avec comité de lecture
    LARIBI, Mohamed-Amine; TAMBOURA, Sahbi; ccSHIRINBAYAN, Mohammadali; BI, R. Tie; BEN DALI, Hachmi; ccTCHARKHTCHI, Abbas; ccFITOUSSI, Joseph (Springer Science and Business Media LLC, 2021)
    Short Fiber Reinforced Composite (SFRC) structures exhibit multiple microstructures (due to material flow during the process). They are generally subjected to variable amplitude loadings. In this context, a robust model ...
  • Damage and fatigue life prediction of short fiber reinforced composites submitted to variable temperature loading: Application to Sheet Molding Compound composites 
    Article dans une revue avec comité de lecture
    TAMBOURA, Sahbi; LARIBI, Mohamad-Amine; ccSHIRINBAYAN, Mohammadali; BI, R. Tie; BEN DALI, Hachmi; ccTCHARKHTCHI, Abbas; ccFITOUSSI, Joseph (Elsevier, 2020)
    The majority of fatigue life prediction models which have been proposed for the Short Fiber Reinforced Composite (SFRC) materials have been developed for constant temperature. However, in real situations, SFRC structures ...
  • Non-isothermal crystallization kinetics and its effect on the mechanical properties of homopolymer isotactic polypropylene 
    Article dans une revue avec comité de lecture
    ccNOUIRA, Samia; HASSINE, T.; ccSHIRINBAYAN, Mohammadali; GAMAOUN, Fehmi; ccTCHARKHTCHI, Abbas; ccFITOUSSI, Joseph (Springer Science and Business Media LLC, 2021)
    The non-isothermal crystallization of the isotactic Polypropylene (iPP) was studied using differential scanning calorimetry and polarizing optical microscopy. Jeziorny’s model and Ozawa’s theoretical approaches were applied ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales