U-NET-based deep learning for automated detection of lathe checks in homogeneous wood veneers
Article dans une revue avec comité de lecture
Author
Date
2025-02-10Journal
European Journal of Wood and Wood ProductsAbstract
Automated detection of lathe checks in wood veneers presents significant challenges due to their variability and the natural properties of wood. This study explores the use of two convolutional neural networks (U-Net architecture) to enhance the precision and efficiency of lathe checks detection in poplar veneers. The approach involves sequential application of two U-Nets: the first for detecting lathe checks through semantic segmentation, and the second for refining these predictions by connecting fragmented lathe checks. Post-processing techniques are applied to denoise the mappings and extract precise lathe check characteristics. The first U-Net demonstrated strong performance in predicting lathe check presence, with precision and recall scores of 0.822 and 0.835, respectively. The second U-Net refined predictions by linking disjointed segments, improving the overall lathe checks mapping process. Comparative analysis with manual methods revealed comparable or superior performance of the automated approach, especially for shallow lathe checks. The results highlight the potential of the proposed method for efficient and reliable lathe check detection in wood veneers.
Files in this item
- Name:
- LABOMAP_EJWWP_2025_MARC.pdf
- Size:
- 3.918Mb
- Format:
- Description:
- Article principal
Collections
Related items
Showing items related by title, author, creator and subject.
-
Communication sans acteMARC, Caroline; MARCON, Bertrand; YAICH, Mariem; DENAUD, Louis; GIRARDON, Stéphane;
VIGUIER, Joffrey (2021)
La thèse s’inscrit dans le cadre du projet ANR BOOST multipartenaires dont l’objectif général est de de faire la démonstration de la possibilité de l’utilisation du bois, sous forme de placages en produit lamellé, pour son ... -
Communication sans acteMARC, Caroline; MARCON, Bertrand; DENAUD, Louis; GIRARDON, Stéphane; BUTAUD, Jean-Claude (2022-11)Cette thèse s’inscrit dans le projet ANR BOOST dont l’objectif est de démontrer la possibilité de l’utilisation du bois dans l’industrie du transport. Cette industrie étant très automatisée et ayant besoin de produits ...
-
Communication avec acteMARC, Caroline; MARCON, Bertrand; DENAUD, Louis; GIRARDON, Stéphane; BUTAUD, Jean-Claude (J.F. Silva Gomes, 2023-07-03)To use wood as a structural element in vehicles, it is necessary to measure its physical properties locally in order to deduce its mechanical behaviour. Density is one of the characteristics that influences the most the ...
-
Article dans une revue avec comité de lectureMARC, Caroline; MARCON, Bertrand; DENAUD, Louis; GIRARDON, Stéphane (MDPI, 2024-11-05)Wood density measurement plays a crucial role in assessing wood quality and predicting its mechanical performance. This dataset was collected to compare the accuracy and reliability of two non-destructive techniques, X-rays ...
-
Article dans une revue avec comité de lectureCASTANIÉ, B.;
PEIGNON, Axel; MARC, C.; EYMA, F.;
CANTAREL, Arthur; SERRA, J.;
CURTI, Rémi;
HADIJI, Hajer; DENAUD, Louis; GIRARDON, Stéphane; MARCON, Bertrand (Elsevier BV, 2024-02)
Wood has always been used by man for his means of transport. It is only since the beginning of the 20th century that it has fallen into disuse due to the industrial production of concrete, steel and plastic materials. ...