• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire des Matériaux et Procédés (LaBoMaP)
  • View Item
  • Home
  • Laboratoire des Matériaux et Procédés (LaBoMaP)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

U-NET-based deep learning for automated detection of lathe checks in homogeneous wood veneers

Article dans une revue avec comité de lecture
Author
MARC, Caroline
127742 Laboratoire Bourguignon des Matériaux et Procédés [LABOMAP]
MARCON, Bertrand
127742 Laboratoire Bourguignon des Matériaux et Procédés [LABOMAP]
DENAUD, Louis
127742 Laboratoire Bourguignon des Matériaux et Procédés [LABOMAP]
GIRARDON, Stéphane
127742 Laboratoire Bourguignon des Matériaux et Procédés [LABOMAP]

URI
http://hdl.handle.net/10985/26164
DOI
10.1007/s00107-025-02208-0
Date
2025-02-10
Journal
European Journal of Wood and Wood Products

Abstract

Automated detection of lathe checks in wood veneers presents significant challenges due to their variability and the natural properties of wood. This study explores the use of two convolutional neural networks (U-Net architecture) to enhance the precision and efficiency of lathe checks detection in poplar veneers. The approach involves sequential application of two U-Nets: the first for detecting lathe checks through semantic segmentation, and the second for refining these predictions by connecting fragmented lathe checks. Post-processing techniques are applied to denoise the mappings and extract precise lathe check characteristics. The first U-Net demonstrated strong performance in predicting lathe check presence, with precision and recall scores of 0.822 and 0.835, respectively. The second U-Net refined predictions by linking disjointed segments, improving the overall lathe checks mapping process. Comparative analysis with manual methods revealed comparable or superior performance of the automated approach, especially for shallow lathe checks. The results highlight the potential of the proposed method for efficient and reliable lathe check detection in wood veneers.

Files in this item

Name:
LABOMAP_EJWWP_2025_MARC.pdf
Size:
3.922Mb
Format:
PDF
Description:
Article principal
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire des Matériaux et Procédés (LaBoMaP)

Related items

Showing items related by title, author, creator and subject.

  • Le BOis pOur les STructures des véhicules (Projet BOOST) : Caractérisation mécanique et physique locale de placages pour la conception optimisée de structures 
    Communication sans acte
    MARC, Caroline; MARCON, Bertrand; YAICH, Mariem; DENAUD, Louis; GIRARDON, Stéphane; ccVIGUIER, Joffrey (2021)
    La thèse s’inscrit dans le cadre du projet ANR BOOST multipartenaires dont l’objectif général est de de faire la démonstration de la possibilité de l’utilisation du bois, sous forme de placages en produit lamellé, pour son ...
  • Évaluations préliminaires des performances de la densitométrie non ionisante du bois par ondes TeraHertz : Projet BOOST 
    Communication sans acte
    MARC, Caroline; MARCON, Bertrand; DENAUD, Louis; GIRARDON, Stéphane; BUTAUD, Jean-Claude (2022-11)
    Cette thèse s’inscrit dans le projet ANR BOOST dont l’objectif est de démontrer la possibilité de l’utilisation du bois dans l’industrie du transport. Cette industrie étant très automatisée et ayant besoin de produits ...
  • PRELIMINARY PERFORMANCE EVALUATIONS OF NON-IONIZINGTERAHERTZ WOOD DENSITOMETRY 
    Communication avec acte
    MARC, Caroline; MARCON, Bertrand; DENAUD, Louis; GIRARDON, Stéphane; BUTAUD, Jean-Claude (J.F. Silva Gomes, 2023-07-03)
    To use wood as a structural element in vehicles, it is necessary to measure its physical properties locally in order to deduce its mechanical behaviour. Density is one of the characteristics that influences the most the ...
  • FMCW THZ radar and X-ray analysis of wood properties: A comparative study 
    Article dans une revue avec comité de lecture
    MARC, Caroline; MARCON, Bertrand; DENAUD, Louis; GIRARDON, Stéphane (Elsevier BV, 2025-03-06)
    Wood is a material valued for its mechanical properties and sustainability. It exhibits substantial variability in density due to its growth being influenced by the external environment. The measurement of its local ...
  • Non-Destructive Wood Analysis Dataset: Comparing X-Ray and Terahertz Imaging Techniques 
    Article dans une revue avec comité de lecture
    MARC, Caroline; MARCON, Bertrand; DENAUD, Louis; GIRARDON, Stéphane (MDPI, 2024-11-05)
    Wood density measurement plays a crucial role in assessing wood quality and predicting its mechanical performance. This dataset was collected to compare the accuracy and reliability of two non-destructive techniques, X-rays ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales