• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

eCAD-Net: Editable Parametric CAD Models Reconstruction from Dumb B-Rep Models Using Deep Neural Networks

Article dans une revue avec comité de lecture
Auteur
ZHANG, Chao
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
PINQUIE, Romain
1043329 Institut polytechnique de Grenoble - Grenoble Institute of Technology [Grenoble INP]
CARASI, Gregorio
DE CHARNACE, Henri
ccPERNOT, Jean-Philippe
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]

URI
http://hdl.handle.net/10985/26196
DOI
10.1016/j.cad.2024.103806
Date
2025-01
Journal
Computer-Aided Design

Résumé

This paper introduces a novel framework capable of reconstructing editable parametric CAD models from dumb B-Rep models. First, each B-Rep model is represented with a network-friendly formalism based on UVgraph, which is then used as input of eCAD-Net, the new deep neural network-based algorithm that predicts feature-based CAD modeling sequences from the graph. Then, the sequences are scaled and fine-tuned using a feature matching algorithm that retrieves the exact parameter values from the input dumb CAD model. The output sequences are then converted in a series of CAD modeling operations to create an editable parametric CAD model in any CAD modeler. A cleaned dataset is used to learn and validate the proposed approach, and is provided with the article. The experimental results show that our approach outperforms existing methods on such reconstruction tasks, and it outputs editable parametric CAD models compatible with existing CAD modelers and ready for use in downstream engineering applications

Fichier(s) constituant cette publication

Nom:
LISPEN_CAD_2025_PERNOT.pdf
Taille:
2.845Mo
Format:
PDF
Fin d'embargo:
2025-07-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Automatic 3D CAD models reconstruction from 2D orthographic drawings 
    Article dans une revue avec comité de lecture
    ZHANG, Chao; ccPOLETTE, Arnaud; CARASI, Gregorio; DE CHARNACE, Henri; ccPERNOT, Jean-Philippe (2023)
    This paper introduces a two-stage approach that automatically generates 3D CAD models from 2D orthographic drawings. First, a pattern-matching algorithm is proposed to reconstruct a network of 3D edges by matching 2D ...
  • Geometric Over-Constraints Detection: A Survey 
    Article dans une revue avec comité de lecture
    HU, Hao; ZHANG, Chao; HUANG, Yanjia; ZHAO, Qian; YEUNG, Sunny; ccPERNOT, Jean-Philippe; ccKLEINER, Mathias (Springer Science and Business Media LLC, 2021-05-11)
    Currently, geometric over-constraints detection is of major interest in several diferent felds. In terms of product development process (PDP), many approaches exist to compare and detect geometric over-constraints, to ...
  • Computer-aided Micro-EDM die-sinking tool design optimisation 
    Article dans une revue avec comité de lecture
    SURLERAUX, Anthony; LEPERT, Romain; BIGOT, Samuel; ccPERNOT, Jean-Philippe (Future Technology Press, 2015)
    This paper describes a new efficient method for computer aided optimisations of micro EDM die sinking tools, which can be used for design optimisation and performance verification in the digital domain. This would facilitate ...
  • Machine Learning-Based Reverse Modeling Approach for Rapid Tool Shape Optimization in Die-Sinking Micro Electro Discharge Machining 
    Article dans une revue avec comité de lecture
    SURLERAUX, Anthony; LEPERT, Romain; KERFRIDEN, Pierre; BIGOT, Samuel; ccPERNOT, Jean-Philippe (ASME, 2020-06)
    This paper focuses on efficient computational optimization algorithms for the generation of micro electro discharge machining (µEDM) tool shapes. In a previous paper, the authors presented a reliable reverse modeling ...
  • Variational geometric modeling with black box constraints and DAGs 
    Article dans une revue avec comité de lecture
    GOUATY, Gilles; FANG, Lincong; MICHELUCCI, Dominique; DANIEL, Marc; RAFFIN, Romain; LANQUETIN, Sandrine; NEVEU, Marc; ccPERNOT, Jean-Philippe (Elsevier, 2016)
    CAD modelers enable designers to construct complex 3D shapes with high-level B-Rep operators. This avoids the burden of low level geometric manipulations. However a gap still exists between the shape that the designers ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales