• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid homogenization neural networks for periodic composites

Article dans une revue avec comité de lecture
Auteur
CHEN, Qiang
301676 Xi'an Jiaotong University [Xjtu]
ZHAO, Wenhui
301676 Xi'an Jiaotong University [Xjtu]
XIAO, Ce
301676 Xi'an Jiaotong University [Xjtu]
YANG, Zhibo
301676 Xi'an Jiaotong University [Xjtu]
ccCHATZIGEORGIOU, George
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccMERAGHNI, Fodil
2175 Roberval [Roberval]
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
CHEN, Xuefeng
301676 Xi'an Jiaotong University [Xjtu]

URI
http://hdl.handle.net/10985/26841
DOI
10.1016/j.ijsolstr.2025.113622
Date
2025-11
Journal
International Journal of Solids and Structures

Résumé

A new physics-informed deep homogenization neural network (DHN) framework is proposed to identify the homogenized and local behaviors in periodic heterogeneous microstructures. To achieve this, the displacement field is decomposed into averaged and fluctuating contributions, with the local unit cell solution obtained via neural networks subject to periodic boundary conditions. The periodic microstructures are divided into sub­domains representing the fiber and matrix phases, respectively. A key contribution of the proposed method is the marriage of elasticity solution and physics-informed neural network to each phase of the composite, namely, the fiber phase as a mesh-free component whose fluctuating displacements are expanded using a discrete Fourier transform, and the matrix phase using material points with fluctuating displacements handled through fully connected neural network layers. The interfacial continuity conditions are enforced by minimizing the traction and displacement differences at separate material points along the interface. Transfer learning is exploited further to facilitate training new microstructures from pre-trained geometry. This hybrid formulation inherently satisfies stress equilibrium equations within the fiber, while efficiently handling the periodic boundary conditions of hexagonal and square unit cells via a series of trainable sinusoidal functions. The innovative use of distinct neural network architectures enables accurate and efficient predictions of displacement and stress when discontinuities are present in the solution fields across the interface. We validate the proposed DHN with the finite-element predictions for unidirectional composites comprised of elastic fiber significantly stiffer than the matrix, under various volume fractions and loading conditions.

Fichier(s) constituant cette publication

Nom:
LEM3_IJSS_2025_MERAGHNI.pdf
Taille:
14.03Mo
Format:
PDF
Fin d'embargo:
2026-06-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Physics-informed deep neural networks towards finite strain homogenization of unidirectional soft composites 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; DU, Xiaoxiao; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; ZHAO, Gang; YANG, Zhibo (Elsevier BV, 2025-11)
    The presence of heterogeneities and significant property mismatches in soft composites lead to complex be­ haviors that are challenging to model with conventional analytical or numerical homogenization techniques. The ...
  • Physics-informed deep homogenization approach for random nanoporous composites with energetic interfaces 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; CHEN, Xuefeng; YANG, Zhibo (Elsevier BV, 2025-01)
    This contribution presents a new physics-informed deep homogenization neural network model for identifying local displacement and stress fields, as well as homogenized moduli, of nanocomposites with periodic arrays of ...
  • Elasticity-inspired data-driven micromechanics theory for unidirectional composites with interfacial damage 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; TU, Wenqiong; WU, Jiajun; HE, Zhelong; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; YANG, Zhibo; CHEN, Xuefeng (Elsevier BV, 2024-11)
    We present a novel elasticity-inspired data-driven Fourier homogenization network (FHN) theory for periodic heterogeneous microstructures with square or hexagonal arrays of cylindrical fibers. Towards this end, two ...
  • Nitsche's method enhanced isogeometric homogenization of unidirectional composites with cylindrically orthotropic carbon/graphite fibers 
    Article dans une revue avec comité de lecture
    DU, Xiaoxiao; CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; ZHAO, Gang; CHEN, Xuefeng (Elsevier BV, 2024-08)
    An isogeometric homogenization (IGH) technique is constructed for the homogenization and localization of unidirectional composites with radially or circumferentially orthotropic carbon/graphite fibers. The proposed theory ...
  • Isogeometric homogenization of unidirectional nanocomposites with energetic surfaces 
    Article dans une revue avec comité de lecture
    DU, Xiaoxiao; CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; WANG, Wei; ZHAO, Gang (Springer Science and Business Media LLC, 2024-04)
    The present work aims to propose an interface-enriched isogeometric analysis strategy for predicting the size-dependent effective moduli and local stress field of periodic arrays of nanosize inhomogeneity. The proposed ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales