• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accuracy assessment of discontinuous Galerkin spectral element method in simulating supersonic free jets

Article dans une revue avec comité de lecture
Author
ABREU, Diego F.
471029 Instituto Tecnológico de Aeronáutica = Aeronautics Institute of Technology [Brésil] [ITA]
ccAZEVEDO, Joao Luiz
471029 Instituto Tecnológico de Aeronáutica = Aeronautics Institute of Technology [Brésil] [ITA]
ccJUNQUEIRA-JUNIOR, Carlos
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/26844
Date
2024-03-16
Journal
Journal of the Brazilian Society of Mechanical Sciences and Engineering

Abstract

The study performs large-eddy simulations of supersonic free jet flows using the Discontinuous Galerkin Spectral Element Method (DGSEM). The main objective of the present work is to assess the resolution requirements for adequate simulation of such flows with the DGSEM approach. The study looked at the influence of the mesh and the spatial discretization accuracy on the simulation results. The present analysis involves four simulations, incorporating three different numerical meshes and two different orders of spatial discretization accuracy. The numerical meshes are generated with distinct mesh topologies and refinement levels. Detailed descriptions of the grid generation and refinement procedures are presented. The study compares flow property profiles and power spectral densities of velocity components with experimental data. The results show a consistent improvement in the computed data as the simulation resolution increases. This investigation revealed a trade-off between mesh and polynomial refinement, striking a balance between computational cost and the accuracy of large-eddy simulation results for turbulent flow analyses.

Files in this item

Name:
Dynfluid-Junqueira-Junior-2025.pdf
Size:
13.30Mb
Format:
PDF
Description:
Article
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • Study on the Resolution of Large-Eddy Simulations for Supersonic Jet Flows 
    Conférence invitée
    JUNQUEIRA-JUNIOR, Carlos; F. ABREU, Diego; T. V. DAURICIO, Eron; F. AZEVEDO, João Luiz (AIAA, 2022-06)
    The present study is concerned with large-eddy simulations (LES) of supersonic jet flows. The work addresses, in particular, the simulation of a perfectly expanded free jet flow with an exit Mach number of 1.4 and an exit ...
  • A comparison of low and high-order methods for the simulation of supersonic jet flows 
    Conférence invitée
    F. ABREU, Diego; T. V. DAURICIO, Eron; F. AZEVEDO, João Luiz; JUNQUEIRA-JUNIOR, Carlos (ABCM, 2021-11)
    The present work compares results for different numerical methods in search of alternatives to improve the quality of large-eddy simulations for the problem of a supersonic turbulent jet flows. Previous work has analyzed ...
  • External Laminar Boundary Layer Simulations Using a High-Fidelity Wall-Modeling Approach 
    Conférence invitée
    VIANA DAURICIO, Eron Tiago; ccJUNQUEIRA JUNIOR, Carlos; FEROLLA DE ABREU, Diego; AZEVEDO, João Luiz F. (ABCM, 2022-11)
    Wall-Modeled Large Eddy Simulation (WMLES) is a well-stablished technique for obtaining high-fidelity solutions of turbulent, high Reynolds number flows, with reasonably acceptable computational costs. However, for external ...
  • Large-eddy simulations of turbulent compressible supersonic jet flows using discontinuous Galerkin methods 
    Communication avec acte
    F. ABREU, Diego; ccJUNQUEIRA JUNIOR, Carlos; ccDAURICIO, Eron; F. AZEVEDO, João Luiz (Scipedia S.L., 2022-06)
    In this work, a discontinuous Galerkin scheme is employed to perform the simulations of supersonic jet flows. A total of four simulations are performed with different meshes and order of accuracy. The number of degrees of ...
  • Strong scaling of numerical solver for supersonic jet flow configurations 
    Article dans une revue avec comité de lecture
    JUNQUEIRA-JUNIOR, Carlos; AZEVEDO, João Luiz F.; PANETTA, Jairo; WOLF, William R.; YAMOUNI, Sami (Springer Verlag, 2019)
    Acoustics loads are rocket design constraints which push researches and engineers to invest efforts in the aeroacoustics phenomena which is present on launch vehicles. Therefore, an in-house computational fluid dynamics ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales