• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • Voir le document
  • Accueil de SAM
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robotized Incremental Sheet Forming Trajectory Control Using Deep Neural Network for Force/Torque Compensator and Task-Space Error Tracking Controller

Article dans une revue avec comité de lecture
Auteur
TO, Xuan Dung
ZIMMER-CHEVRET, Sandra
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccOUAIDAT, GHINWA
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccRAHARIJAONA, Thibaut
107452 Laboratoire de Conception Fabrication Commande [LCFC]
NOUREDDINE, Farid
ccRAKOTONDRABE, Micky
1222660 Laboratoire Génie de Production [LGP]

URI
http://hdl.handle.net/10985/26982
Date
2025-01-09
Journal
Robotized Incremental Sheet Forming Trajectory Control using Deep Neural Network for Force/Torque Compensator and Task-Space Error Tracking Controller

Résumé

In Robotized Incremental Sheet Forming (ISF), achieving precise geometrical accuracy is a challenging task due to trajectory tool center point (TCP) position errors at the forming tool attached to the robot’s end-effector. These errors primarily arise from external disturbance forces and torques generated during the interaction between the forming tool and the elastic metal sheet. While jointtorque space controllers can mitigate reaction forces and torques through dynamic modeling, jointspace control has inherent limitations, particularly for industrial high-load robots like the ABB IRB 8700. To overcome these challenges, thiswork implements an external force/torque (F/T) compensator in task-space using a deep neural network. The network predicts trajectory errors induced by reaction forces and torques measured via a 6-axis F/T sensor. Additionally, the forming tool’s trajectory is precisely monitored using a laser tracker, which serves as a feedback mechanism in a closed-loop task-space error-tracking controller. This controller detects and corrects trajectory deviations in real time. By integrating the F/T compensator and the task-space error-tracking controller, the proposed approach effectively compensates for reaction forces and torques while addressing additional errors introduced by other process-related factors. This integration results in significantly enhanced accuracy in robotic incremental forming processes.

Fichier(s) constituant cette publication

Nom:
LCFC_SSR_2025_ZIMMER.pdf
Taille:
18.85Mo
Format:
PDF
Description:
Robotized Incremental Sheet ...
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire de Conception Fabrication Commande (LCFC)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Prediction of bead geometry with consideration of interlayer temperature effect for CMT-based wire-arc additive manufacturing 
    Article dans une revue avec comité de lecture
    WANG, Zeya; ZIMMER-CHEVRET, Sandra; LÉONARD, François; ABBA, Gabriel (Springer Science and Business Media LLC, 2021-09)
    Cold metal transfer (CMT)–based wire-arc additive manufacturing (WAAM) is increasingly popular for the production of large and complex metallic components due to its high deposition rate, low heat input, and excellent ...
  • Improvement strategy for the geometric accuracy of bead’s beginning and end parts in wire-arc additive manufacturing (WAAM) 
    Article dans une revue avec comité de lecture
    WANG, Zeya; ZIMMER-CHEVRET, Sandra; LÉONARD, François; ABBA, Gabriel (Springer Science and Business Media LLC, 2021-09)
    Cold metal transfer (CMT)-based wire-arc additive manufacturing (WAAM) is a promising method for the production of large-scale and complex metallic parts because of its high efficiency, less heat input and low cost. However, ...
  • Off-line path programming for three-dimensional robotic friction stir welding based on Bézier curves 
    Article dans une revue avec comité de lecture
    KOLEGAIN, Komlan; LEONARD, François; ZIMMER-CHEVRET, Sandra; BEN ATTAR, Amarilys; ABBA, Gabriel (Emerald, 2018)
    Robotic friction stir welding (RFSW) is an innovative process which enables solid-state welding of aluminum parts using robots. A major drawback of this process is that the robot joints undergo elastic deformation during ...
  • Qualification of a robotized Friction Stir Welding System 
    Communication avec acte
    ZIMMER-CHEVRET, Sandra; LAYE, Julien; GOUSSAIN, Jean-Claude; MARTIN, Patrick; ccLANGLOIS, Laurent (2010)
    This paper presents an experimental methodology to determine a Friction Stir Welding (FSW) means of production based on the experimental study of the tool / material mechanical interactions generated during the welding ...
  • Influence de l'orientation de l'outil sur les forces générées en FSW 
    Communication avec acte
    JEMAL, Nejah; ZIMMER-CHEVRET, Sandra; HATSCH, Jonathan; ABBA, Gabriel; ccLANGLOIS, Laurent (2013)
    Friction Stir Welding (FSW) est considéré comme un procédé de soudage à l’état solide très demandé pour souder des alliages d'aluminium. Au cours des dernières années, les chercheurs se sont orientés vers l’industrialisation ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales