• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Micromechanics-Informed Neural Networks for Periodic Homogenization of Thermocondcutive Behavior in Unidirectional Composites with Cylindrically Orthotropic Graphite Fibers

Article dans une revue avec comité de lecture
Author
XIAO, Ce
301676 Xi'an Jiaotong University [Xjtu]
CHEN, Qiang
301676 Xi'an Jiaotong University [Xjtu]
ccEL FALLAKI IDRISSI, Mohammed
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
YANG, Zhibo
301676 Xi'an Jiaotong University [Xjtu]
CHEN, Xuefeng
301676 Xi'an Jiaotong University [Xjtu]
ccCHATZIGEORGIOU, George
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/27122
DOI
10.1016/j.apm.2025.116622
Date
2025-11
Journal
Applied Mathematical Modelling

Abstract

A micromechanics-informed neural network framework is developed for homogenization of periodic unidirectional thermoconductive composites with cylindrically orthotropic fibers. The framework hard-imposes the steady-state governing heat conduction equations within the network architecture, enabling accurate capture of singular heat flux fields at the fiber center that are challenging for conventional approaches. In contrast, continuity and periodicity conditions are enforced via boundary collocation points in the loss function. Validation against finite element simulations across a wide range of fiber volume fractions shows that accurate and converged temperature distributions can be achieved after 9000 training epochs using 8-16 harmonic terms. Additional higher-order harmonics are difficult to train reliably and may degrade predictions. While strong agreement is observed in the matrix heat flux distributions, noticeable discrepancies persist in the fiber phase due to varying ability to capture the singular heat flux fields. Furthermore, uniform collocation points converge faster than random points during solution refinement. Finally, transfer learning is employed to accelerate training for new configurations, allowing the network to achieve comparable accuracy after only 2000 training epochs, which is substantially fewer than the 9,000 epochs required when training from scratch.

Files in this item

Name:
LEM3_AMM_2026_CHATZIGEORGIOU.pdf
Size:
3.463Mb
Format:
PDF
Embargoed until:
2026-06-01
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Hybrid homogenization neural networks for periodic composites 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; ZHAO, Wenhui; XIAO, Ce; YANG, Zhibo; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; CHEN, Xuefeng (Elsevier BV, 2025-11)
    A new physics-informed deep homogenization neural network (DHN) framework is proposed to identify the homogenized and local behaviors in periodic heterogeneous microstructures. To achieve this, the displacement field is ...
  • Physics-informed deep homogenization approach for random nanoporous composites with energetic interfaces 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; CHEN, Xuefeng; YANG, Zhibo (Elsevier BV, 2025-01)
    This contribution presents a new physics-informed deep homogenization neural network model for identifying local displacement and stress fields, as well as homogenized moduli, of nanocomposites with periodic arrays of ...
  • Elasticity-inspired data-driven micromechanics theory for unidirectional composites with interfacial damage 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; TU, Wenqiong; WU, Jiajun; HE, Zhelong; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; YANG, Zhibo; CHEN, Xuefeng (Elsevier BV, 2024-11)
    We present a novel elasticity-inspired data-driven Fourier homogenization network (FHN) theory for periodic heterogeneous microstructures with square or hexagonal arrays of cylindrical fibers. Towards this end, two ...
  • Physics-informed deep neural networks towards finite strain homogenization of unidirectional soft composites 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; DU, Xiaoxiao; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; ZHAO, Gang; YANG, Zhibo (Elsevier BV, 2025-11)
    The presence of heterogeneities and significant property mismatches in soft composites lead to complex be­ haviors that are challenging to model with conventional analytical or numerical homogenization techniques. The ...
  • Multiscale Thermodynamics-Informed Neural Networks (MuTINN) for nonlinear structural computations of recycled thermoplastic composites 
    Article dans une revue avec comité de lecture
    SEKKAL, S.E.; ccEL FALLAKI IDRISSI, Mohammed; ccMERAGHNI, Fodil; ccCHATZIGEORGIOU, George; ccCHINESTA SORIA, Francisco (Elsevier BV, 2025-04)
    Fiber-reinforced thermoplastic composites are increasingly valued for their light-weight properties, mechanical performance, and recyclability, yet the recycling process introduces microstructural heterogeneities that ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales