• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonlinear optimal perturbations in a Couette flow: bursting and transition

Article dans une revue avec comité de lecture
Author
CHERUBINI, Stefania
19097 Dipartimento di Ingegneria Meccanica e Gestionale [DIMEG]
134975 Laboratoire de Dynamique des Fluides [DynFluid]
DE PALMA, Pietro
19097 Dipartimento di Ingegneria Meccanica e Gestionale [DIMEG]

URI
http://hdl.handle.net/10985/6863
DOI
10.1017/jfm.2012.544
Date
2013
Journal
Journal of Fluid Mechanics

Abstract

This paper provides the analysis of bursting and transition to turbulence in a Couette flow, based on the growth of nonlinear optimal disturbances. We use a global variational procedure to identify such optimal disturbances, defined as those initial perturbations yielding the largest energy growth at a given target time, for given Reynolds number and initial energy. The nonlinear optimal disturbances are found to be characterized by a basic structure, composed of inclined streamwise vortices along localized regions of low and high momentum. This basic structure closely recalls that found in boundary-layer flow (Cherubini et al., J. Fluid Mech., vol. 689, 2011, pp. 221–253), indicating that this structure may be considered the most ‘energetic’ one at short target times. However, small differences in the shape of these optimal perturbations, due to different levels of the initial energy or target time assigned in the optimization process, may produce remarkable differences in their evolution towards turbulence. In particular, direct numerical simulations have shown that optimal disturbances obtained for large initial energies and target times induce bursting events, whereas for lower values of these parameters the flow is directly attracted towards the turbulent state. For this reason, the optimal disturbances have been classified into two classes, the highly dissipative and the short-path perturbations. Both classes lead the flow to turbulence, skipping the phases of streak formation and secondary instability which are typical of the classical transition scenario for shear flows. The dynamics of this transition scenario exploits three main features of the nonlinear optimal disturbances: (i) the large initial value of the streamwise velocity component; (ii) the streamwise dependence of the disturbance; (iii) the presence of initial inclined streamwise vortices. The short-path perturbations are found to spend a considerable amount of time in the vicinity of the edge state (Schneider et al., Phys. Rev. E, vol. 78, 2008, 037301), whereas the highly dissipative optimal disturbances pass closer to the edge, but they are rapidly repelled away from it, leading the flow to high values of the dissipation rate. After this dissipation peak, the trajectories do not lead towards the turbulent attractor, but they spend some time in the vicinity of an unstable periodic orbit (UPO). This behaviour led us to conjecture that bursting events can be obtained not only as homoclinic orbits approaching the UPO, as recently found by van Veen & Kawahara (Phys. Rev. Lett., vol. 107, 2011, p. 114501), but also as heteroclinic orbits between the equilibrium solution on the edge and the UPO.

Files in this item

Name:
JFMCouette2013.pdf
Size:
7.050Mb
Format:
PDF
Embargoed until:
2014-03-13
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • Optimal perturbations in boundary layer flows over rough surfaces 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE TULLIO, Marco; DE PALMA, Pietro; PASCAZIO, Giuseppe (American Society of Mechanical Engineers, 2013)
    This work provides a three-dimensional energy optimization analysis, looking for perturbations inducing the largest energy growth at a finite time in a boundary-layer flow in the presence of roughness elements. The immersed ...
  • Transient growth in the flow past a three-dimensional smooth roughness element 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE TULLIO, Marco; DE PALMA, Pietro; PASCAZIO, Giuseppe (Cambridge University Press (CUP), 2013)
    This work provides a global optimization analysis, looking for perturbations inducing the largest energy growth at a finite time in a boundary-layer flow in the presence of smooth three-dimensional roughness elements. ...
  • Hairpin-like optimal perturbations in plane Poiseuille flow 
    Article dans une revue avec comité de lecture
    FARANO, Mirko; CHERUBINI, Stefania; DE PALMA, Pietro; ccROBINET, Jean-Christophe (Cambridge University Press (CUP), 2015)
    In this work it is shown that hairpin vortex structures can be the outcome of a nonlinear optimal growth process, in a similar way as streaky structures can be the result of a linear optimal growth mechanism. With this ...
  • Numerical Study of the Effect of Freestream Turbulence on by-pass Transition in a Boundary Layer 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; ccROBINET, Jean-Christophe (Elsevier, 2014)
    We use direct numerical simulations in the presence of free-stream turbulence having different values of intensity, T u, and integral length scale, L, in order to determine which kind of structures are involved in the path ...
  • Minimal perturbations approaching the edge of chaos in a Couette flow 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro (IOP Publishing, 2014)
    This paper provides an investigation of the structure of the stable manifold of the lower branch steady state for the plane Couette flow. Minimal energy perturbations to the laminar state are computed, which approach within ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales