• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A purely nonlinear route to transition approaching the edge of chaos in a boundary layer

Article dans une revue avec comité de lecture
Author
CHERUBINI, Stefania
19097 Dipartimento di Ingegneria Meccanica e Gestionale [DIMEG]
DE PALMA, Pietro
19097 Dipartimento di Ingegneria Meccanica e Gestionale [DIMEG]
BOTTARO, Alessandro
ccROBINET, Jean-Christophe
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/6864
DOI
10.1088/0169-5983/44/3/031404
Date
2012
Journal
Fluid Dynamics Research

Abstract

The understanding of transition in shear flows has recently progressed along new paradigms based on the central role of coherent flow structures and their nonlinear interactions. We follow such paradigms to identify, by means of a nonlinear optimization of the energy growth at short time, the initial perturbation which most easily induces transition in a boundary layer. Moreover, a bisection procedure has been used to identify localized flow structures living on the edge of chaos, found to be populated by hairpin vortices and streaks. Such an edge structure appears to act as a relative attractor for the trajectory of the laminar base state perturbed by the initial finite-amplitude disturbances, mediating the route to turbulence of the flow, via the triggering of a regeneration cycle of Lambda and hairpin structures at different space and time scales. These findings introduce a new, purely nonlinear scenario of transition in a boundary-layer flow.

Files in this item

Name:
Dynfluid-FDR-cherubini-2012.pdf
Size:
1.383Mb
Format:
PDF
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • The minimal seed of turbulent transition in the boundary layer 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; BOTTARO, Alessandro; ccROBINET, Jean-Christophe (Cambridge University Press (CUP), 2011)
    This paper describes a scenario of transition from laminar to turbulent flow in a spatially developing boundary layer over a flat plate. The base flow is the Blasius non-parallel flow solution; it is perturbed by optimal ...
  • Edge states in a boundary layer 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; BOTTARO, Alessandro; ccROBINET, Jean-Christophe (American Institute of Physics, 2011)
    The understanding of laminar-turbulent transition in shear flows has recently progressed along new paradigms based on the central role of nonlinear exact coherent states. We follow such paradigms to identify, for the first ...
  • Optimal wave packets in a boundary layer and initial phases of a turbulent spot 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; BOTTARO, Alessandro; DE PALMA, Pietro; ccROBINET, Jean-Christophe (Cambridge University Press (CUP), 2010)
    The three-dimensional global optimal dynamics of a flat-plate boundary layer is studied by means of an adjoint-based optimization in a spatial domain of long – but finite – streamwise dimension. The localized optimal initial ...
  • Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; BOTTARO, Alessandro; ccROBINET, Jean-Christophe (American Physical Society (APS), 2010)
    Recent studies have suggested that in some cases transition can be triggered by some purely nonlinear mechanisms. Here we aim at verifying such an hypothesis, looking for a localized perturbation able to lead a boundary-layer ...
  • Hairpin-like optimal perturbations in plane Poiseuille flow 
    Article dans une revue avec comité de lecture
    FARANO, Mirko; CHERUBINI, Stefania; DE PALMA, Pietro; ccROBINET, Jean-Christophe (Cambridge University Press (CUP), 2015)
    In this work it is shown that hairpin vortex structures can be the outcome of a nonlinear optimal growth process, in a similar way as streaky structures can be the result of a linear optimal growth mechanism. With this ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales