• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

A priori error indicator in the transformation method for problems with geometric uncertainties

Article dans une revue avec comité de lecture
Auteur
MAC, Duy Hung
MIPO, Jean-Claude
TSUKERMAN, Igor
ccCLENET, Stephane
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]

URI
http://hdl.handle.net/10985/7114
DOI
10.1109/TMAG.2013.2243706
Date
2013
Journal
IEEE Transactions on Magnetics

Résumé

To solve stochastic problems with geometric uncertainties, one can transform the original problem in a domain with stochastic boundaries and interfaces to a problem defined in a deterministic domain with uncertainties in the material behavior. The latter problem is then discretized. There exist infinitely many random mappings that lead to identical results in the continuous domain but not in the discretized domain. In this paper, an a priori error indicator is proposed for electromagnetic problems with scalar and vector potential formulations. This leads to criteria for selecting random mappings that reduce the numerical error. In an illustrative numerical example, the proposed a priori error indicator is compared with an a posteriori estimator for both potential formulations

Fichier(s) constituant cette publication

Nom:
L2EP_MAGNETICS_2013-05-07(bis) ...
Taille:
527.3Ko
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Comparison of two approaches to compute magnetic field in problems with random domains 
    Article dans une revue avec comité de lecture
    MAC, Duy Hung; ccCLENET, Stephane; MIPO, Jean-Claude (Institution of Engineering and Technology, 2012)
    Methods are now available to solve numerically electromagnetic problems with uncertain input data (behaviour law or geometry). The stochastic approach consists in modelling uncertain data using random variables. Discontinuities ...
  • Transformation Methods for Static Field Problems With Random Domains 
    Article dans une revue avec comité de lecture
    MAC, Duy Hung; ccCLENET, Stephane; MIPO, Jean-Claude (Institute of Electrical and Electronics Engineers, 2011)
    The numerical solution of partial differential equations onto random domains can be done by using a mapping transforming this random domain into a deterministic domain. The issue is then to determine this one to one random ...
  • Solution of Static Field Problems With Random Domains 
    Article dans une revue avec comité de lecture
    MAC, Duy Hung; MIPO, Jean-Claude; MOREAU, Olivier; ccCLENET, Stephane (Institute of Electrical and Electronics Engineers, 2010)
    A method to solve stochastic partial differential equations on random domains consists in using a one-to-one random mapping function which transforms the random domain into a deterministic domain. With this method, the ...
  • Study of the Influence of the Fabrication Process Imperfections on the Performances of a Claw Pole Synchronous Machine Using a Stochastic Approach 
    Article dans une revue avec comité de lecture
    LIU, Sijun; MAC, Hung; MIPO, Jean-Claude; ccCOOREVITS, Thierry; ccCLENET, Stephane (Institute of Electrical and Electronics Engineers, 2015)
    In mass production, fabrication processes of electrical machines are not perfectly repeatable with time, leading to dispersions on the dimensions which are not equal to their nominal values. The issue is then to link the ...
  • Residual-based a posteriori error estimation for stochastic magnetostatic problems 
    Article dans une revue avec comité de lecture
    MAC, Duy Hung; TANG, Z.; CREUSE, E.; ccCLENET, Stephane (Elsevier, 2015)
    In this paper, we propose an a posteriori error estimator for the numerical approximation of a stochastic magnetostatic problem, whose solution depends on the spatial variable but also on a stochastic one. The spatial ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales