A priori error indicator in the transformation method for problems with geometric uncertainties
Article dans une revue avec comité de lecture
Date
2013Journal
IEEE Transactions on MagneticsRésumé
To solve stochastic problems with geometric uncertainties, one can transform the original problem in a domain with stochastic boundaries and interfaces to a problem defined in a deterministic domain with uncertainties in the material behavior. The latter problem is then discretized. There exist infinitely many random mappings that lead to identical results in the continuous domain but not in the discretized domain. In this paper, an a priori error indicator is proposed for electromagnetic problems with scalar and vector potential formulations. This leads to criteria for selecting random mappings that reduce the numerical error. In an illustrative numerical example, the proposed a priori error indicator is compared with an a posteriori estimator for both potential formulations
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureMAC, Duy Hung; CLENET, Stephane; MIPO, Jean-Claude (Institution of Engineering and Technology, 2012)Methods are now available to solve numerically electromagnetic problems with uncertain input data (behaviour law or geometry). The stochastic approach consists in modelling uncertain data using random variables. Discontinuities ...
-
Article dans une revue avec comité de lectureMAC, Duy Hung; CLENET, Stephane; MIPO, Jean-Claude (Institute of Electrical and Electronics Engineers, 2011)The numerical solution of partial differential equations onto random domains can be done by using a mapping transforming this random domain into a deterministic domain. The issue is then to determine this one to one random ...
-
Article dans une revue avec comité de lectureMAC, Duy Hung; MIPO, Jean-Claude; MOREAU, Olivier; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2010)A method to solve stochastic partial differential equations on random domains consists in using a one-to-one random mapping function which transforms the random domain into a deterministic domain. With this method, the ...
-
Article dans une revue avec comité de lectureLIU, Sijun; MAC, Hung; MIPO, Jean-Claude; COOREVITS, Thierry; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2015)In mass production, fabrication processes of electrical machines are not perfectly repeatable with time, leading to dispersions on the dimensions which are not equal to their nominal values. The issue is then to link the ...
-
Article dans une revue avec comité de lectureIn this paper, we propose an a posteriori error estimator for the numerical approximation of a stochastic magnetostatic problem, whose solution depends on the spatial variable but also on a stochastic one. The spatial ...