Uncertainty Quantification in Computational Electromagnetics: The stochastic approach
Article dans une revue sans comité de lecture
Résumé
Models in electromagnetism are more and more accurate. In some applications, the gap between the experience and the model comes from the deviation on input data of the model which are not perfectly known. The stochastic approach can be used to quantify the effect of these input data uncertainties on the outputs of the model. In this article, the application of such approach in computational electromagnetics is presented. The four steps development of the model, characterization and modeling of the input data variability, uncertainty quantification, postprocessing (sensitivity analysis) are described and illustrated by an example of electrical machine with uncertain dimensions
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureHENNERON, Thomas; PIERQUIN, Antoine; BRISSET, Stéphane; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2016)To study a multirate system, each subsystem can be solved by a dedicated sofware with respect to the physical problem and the time constant. Then, the problem is the coupling of the solutions of the subsystems. The Waveform ...
-
Article dans une revue avec comité de lecturePIERQUIN, Antoine; HENNERON, Thomas; BRISSET, Stephane; CLENET, Stephane (Wydawnictwo Czasopism i Ksia̜żek Technicznych Sigma, 2015)The modelling of a multirate system -composed of components with heterogeneous time constants- can be done using fixed-point method. This method allows a time-discretization of each subsystem with respect to its own time ...
-
Model-Order Reduction of Magnetoquasi-Static Problems Based on POD and Arnoldi-Based Krylov Methods Communication avec acteThe proper orthogonal decomposition method and Arnoldi-based Krylov projection method are investigated in order to reduce a finite-element model of a quasi-static problem. Both methods are compared on an academic example ...
-
Article dans une revue avec comité de lecturePIERQUIN, Antoine; BRISSET, Stéphane; HENNERON, Thomas; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2014)We present an optimization problem that requires to model a multirate system, composed of subsystems with different time constants. We use waveform relaxation method in order to simulate such a system. But computation time ...
-
Article dans une revue avec comité de lectureEL BECHARI, Reda; BRISSET, Stéphane; MIPO, Jean-Claude; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2017)Meta-models proved to be a very efficient strategy for optimization of expensive black-box models, e.g. Finite Element simulation for electromagnetic devices. It enables to reduce the computational burden for optimization ...